A 2840 year record of nitrate and its stable isotopic composition from the Dome A ice core, East Antarctica

S. JIANG1*, J. COLE-DAI2, Y. LI1, L. GENG1, D.G. FERRIS2, G. SHI1, C. AN1 AND H. MA1

1Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200136 P.R. China
(*correspondence: jiangsu@pric.org.cn)
2Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
3Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA

During the 21st Chinese Antarctic Research Expedition in 2004/2005 austral summer, a 109.91 m ice core (hereafter DA2005 core) was recovered at the site about 300 m away from the summit of Dome A. The top 100.42 m was analyzed for major chemical impurities and isotopic composition of nitrate. Dating was based on the volcanic stratigraphy and average annual accumulation rate. Results showed that the analyzed 100.42 m part of the core covers the last 2840 years before present, from 840 BC to AD 1998 [1].

Nitrate concentration in the DA2005 core varies between 2.86 µg kg⁻¹ and 30.75 µg kg⁻¹ throughout the 2840 years, with the mean concentration of 11.84 µg kg⁻¹. Comparisons with previous Antarctic ice core nitrate records show that the DA2005 core has the lowest mean concentration of nitrate, which is consistent with the lowest accumulation rate at Dome A among these sampling sites. Decreased nitrate concentration during the period of Little Ice Age (AD 1500-1900) is observed in the DA2005 core. The δ¹⁵N(NO₃⁻) values vary between 235.4 ‰ and 279.4 ‰, which suggest strong ¹⁵N enrichment in the DA2005 core. The sample covering the most recent time period (AD 1695-1838) has the lowest δ¹⁵N(NO₃⁻) value. The Δ¹⁷O(NO₃⁻) values span from 28.9 ‰ to 31.4 ‰, which is among the range ever observed [2,3]. An increasing trend is seen during the period of AD 1225-1838, which corresponds to the time period when nitrate concentration remains low. The maximum Δ¹⁷O(NO₃⁻) value occurs in the period AD 1695-1838, and the minimum value occurs in the period AD 62-166.

This work was supported by National Science Foundation of China (41476169, 40906098).