Coprecipitation of 14C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways

David J Hodkin¹ Douglas I Stewart² James T Graham³ Ian T Burke^{1*}

¹School of Earth and Environment and ² School of Civil Engineering, University of Leeds, Leeds, UK, LS2 9JT

³National Nuclear Laboratory, Sellafield, UK, CA20 1PG

 90 Sr and 14 C are two of the contaminants found at elevated levels in groundwater under the Separation Area of the Sellafield reprocessing site in Cumbria, UK. A conventional remediation technique for this suite of contaminants may involve pumping the groundwater and passing it through anion and cation exchange media. However, the effectiveness of this process is reduced by competing ions present in groundwaters (e.g. Ca²⁺, Na⁺)¹.

Precipitation of 90 Sr and 14 C as insoluble carbonate² offers a potentially lower cost alternative, producing a solid residue that is readily grouted in cement wasteforms.

It has been shown that the crystallization pathways occurring between aqueous ions of Ca^{2+} and CO_3^{2-} , and thermodynamically stable calcite are an important control on the removal of ¹⁴C from solution. If the precipitate undergoes recrystallization ¹⁴C and ⁹⁰Sr will become remobilized to the solution. This is of minimal importance for the Sr, which is reprecipitated into the newly formed crystal lattice. However, in systems open to atmosphere, ¹⁴C undergoes mixing with ¹²C derived from in-gassing of CO_2 and becomes diluted, reducing its removal efficiency.

Solution Ca:CO₃ ratios were found to be important for ¹⁴C removal. Where CO₃²⁻ was present equal to or in excess of Ca, ¹⁴C removal was limited due to the dilution of ¹⁴CO₃²⁻ by ¹²CO₃²⁻. Sr removal however was not significantly affected, as atmospheric CO₂ in-gassing was able to provide sufficient CO₃²⁻ for full Ca²⁺, and thus Sr²⁺ removal. This process was able to achieve maximum removals of 99.7% for ¹⁴C and 98.6% for ⁹⁰Sr in the Ca[10mM]:CO₃²⁻[1mM] experiment.

Extrapolating these removal efficincies from our experiments to the most contaminated groundwater present at Sellafield suggests that each m³ of groundwater would produce 1.23 kg of calcite containing 123.23 MBq of β activity (75 GBq/ton). The effluent from this process would contain a residual 0.15 KBq L⁻¹ of ¹⁴C and 0.62 KBq L⁻¹ of ⁹⁰Sr.

¹ Marinin D & Brown G. 2000 Waste Manag. 20 (7)

² Fujita et al. 2000 Geomicrobiol. J. 17 (4)