Mineralogy of Eolian Sands at Gale Crater, Mars


1Dept. of Geosciences, Univ. of Arizona, Tucson, AZ 85721, USA, cheriea@email.arizona.edu
2Planetary Science Institute, Tucson, AZ, USA
3Jet Propulsion Laboratory/Caltech, Pasadena, CA, USA
4NASA Ames, Moffett Field, CA, USA
5NASA Johnson Space Center, Houston TX, USA
6Aerodyne Industries at NASA JSC, Houston, TX, USA
7Chesapeake Energy, Oklahoma City, OK, USA
8California Institute of Technology, Pasadena, CA, USA
9Malin Space Science Systems, San Diego, CA, USA
10Dept. of Physics, Univ. of Guelph, Guelph, ON, Canada
11Lunar and Planetary Institute, Houston, TX
12SETI, Mountain View, CA, USA
13Arizona State University, Tempe, AZ, USA

The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale Crater, Mars [1]. Two eolian sands have been sampled during MSL’s mission: the Rocknest sand shadow consisting of armored sediments [2] and Gobabeb, a sample from the active Bagnold dune field at the base of Mount Sharp. The CheMin X-ray diffraction instrument performed quantitative mineralogical analyses of the <150 µm portion of these sediments. Both deposits are dominated by basaltic minerals along with a significant portion of X-ray amorphous material. In addition, the mineral chemistry of olivine and plagioclase is unchanged based on modeled peak positions in the Rocknest and Gobabeb diffraction data. Bulk chemical analyses of the Gobabeb >150 µm fraction from APXS suggest that the mineralogy is more mafic than the CheMin analyzed fraction. This presentation will compare the active, Gobabeb, and inactive, Rocknest, sand deposits and use the mineralogy to explore the weathering histories and sources for each sediment.