Erosion of archean continents: The Nd-Hf isotopic record of Barberton sedimentary rocks

$$\begin{split} M. \, GAR { \c Con}^{1*}, R. \, W. \, CARLSON^1, S. \, B. \, SHIREY^1, \\ N. \, T. \, ARNDT^2 \, \text{AND} \, M. \, HORAN^1 \end{split}$$

 ¹Carnegie Institution of Washington, DTM, Washington DC, USA (^{*}correspondence: mgarcon@carnegiescience.edu)
²ISTerre, Université Joseph Fourier, Grenoble, France

Archean sedimentary rocks have amalgamated the erosion products of large continental areas and provide a more comprehensive view of the composition of Archean continents than the igneous rock record. Here we present new trace element data as well as ¹⁴⁷Sm⁻¹⁴³Nd and ¹⁷⁶Lu⁻¹⁷⁷Hf isotopic compositions for 3.23-3.26 Ga sedimentary rocks - shale, siltstone and sandstone - drilled in the Barberton greenstone belt, South Africa. Principal component analysis (PCA) of major and trace elements reveals that the sediment geochemistry is controlled by three main endmembers: (1) a detrital source enriched in Al₂O₃, K₂O, TiO₂, REE and HFSE, that is a mixture of felsic and mafic erosion products, (2) a Sirich component related to chert clasts and/or the silification of the sediments, (3) a Ca- and Fe-rich component associated with pyrite, Fe-oxides and carbonate.

Most detrital samples define a linear array on a Lu-Hf isochron diagram whose slope corresponds to an age of $3365 \pm$ 370 Ma; within error of both the accepted deposition age of the sediments (3.23-3.26 Ga) and the U-Pb ages of detrital zircons (peaks at 3.25 Ga and 3.45 Ga). At the sediment deposition age, Nd-Hf isotopic compositions lie along the Terrestrial Array ($\varepsilon_{Nd(T)} = -1.4$ to +0.1, $\varepsilon_{Hf(T)} = -0.8$ to +3.3), suggesting that the eroded Archean crust was, on average, not more than 300 Ma older than the sediment deposition age. The Si-rich samples show scattered Hf isotopic compositions but define a linear Sm-Nd array with an age of 3818 ± 410 Ma. At the sediment deposition age, Si-rich samples have negative $\epsilon_{\mbox{\tiny Nd}}$ $(\varepsilon_{\text{Nd(T)}} = -2.0 \text{ to } -0.5)$ but extremely radiogenic $\varepsilon_{\text{Hf}}(\varepsilon_{\text{Hf(T)}} = +1.4$ to +13.1). This unusually strong isotopic decoupling may reflect either the contribution of chert clasts having low Hf contents but very high ¹⁷⁶Lu/¹⁷⁷Hf ratios (up to 0.9), or significant loss of Lu (20 to 90%) after sediment deposition that did not affect the Sm-Nd system. Some of the Ca- and Ferich samples show typical seawater REE patterns but no ε_{Nd} - ε_{Hf} isotopic decoupling at the sediment deposition age, as observed in modern seawater precipitates. These results are in line with erosion of a relatively young crust and confirm the lack of significantly old continental crust in the Barberton area at ~ 3.2Ga.