Kinetics of hydrogen/deuterium exchanges in cometary ices

 $\begin{array}{l} M. \ Faure^1, E. \ Quirico^1, A. \ Faure^1, B. \ Schmitt^1, \\ P. \ Theulé^2 \ and \ U. \ Marboeuf^3 \end{array}$

¹Université Grenoble Alpes, CNRS, IPAG UMR 5274, Grenoble F-38041, France

²Aix Marseille Université, CNRS, PIIM UMR 7345, 13397, Marseille, France

³Physics Institute and Center for Space and Habitability,

University of Bern, Bern, Switzerland

The D/H composition of volatile molecules composing cometary ices brings key constraints on the origin of comets, on the extent of their presolar heritage, as well as on the origin atmospheres and hydrospheres of terrestrial planets. of Nevertheless, the D/H composition may have been modified to various extents in the nucleus when a comet approaches the sun and experiences deep physical and chemical modifications in its subsurface. In this talk, we question the evolution of the D/H ratio of organic species by proton exchanges with water ice. We experimentally studied the kinetics of D/H exchanges on the ice mixtures H₂O:CD₃OD, H₂O:CD₃ND₂ and D₂O:HCN. Our results show that fast exchanges occur on the -OH and -NH₂ chemical groups, which are processed through hydrogen bonds exchanges with water and by the molecular mobility triggered by structural changes, such as glass transition or crystallization. D/H exchanges kinetic is best described by a second-order kinetic law with activation energies of 4300 \pm 900 K and 3300 \pm 100 K for H₂O:CD₃OD and H₂O:CD₃ND₂ ice mixtures, respectively. The corresponding pre-exponential factors ln(A(s-1)) are 25±7 and 20±1, respectively. No exchange was observed in the case of HCN trapped in D₂O ice. These results strongly suggest that upon thermal heating 1) -OH and -NH₂ chemical groups of any organic molecules loose their primordial D/H composition and equilibrate with water ice, 2) HCN does not experience proton transfer and keeps a primordial D/H composition and 3) C-H chemical groups are not isotopically modified.