The use of lithium and its isotopes in foraminifera as proxies for the past ocean DIC

JONATHAN EREZ¹, CLAIRE ROLLION BARD² NATHALIE VIGIER³ YAEL LEVENSON¹AND SHMUEL BENTOV¹

¹Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University, Jerusalem 91904, Israel

²Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité, Université Paris Diderot, CNRS, F-75005 Paris, France

³CRPG-CNRS, Université de Lorraine, 15 rue Notre-Dame des Pauvres, 54501 Vandoeuvre-les Nancy cedex, France

Experiments on the benthic foraminifera Amphistegina lobifera and A. lessonii, demonstrate that Li/Ca and δ^7 Li in their shells allow good estimates of the seawater dissolved inorganic carbon [1]. The chemical and isotopic behaviour of these proxies are inherently connected to the biomineralization mechanisms of these organisms. Ca²⁺ is obtained directly by endocytosis (vacuolization) of seawater while the CO₃²⁻ is obtained by a carbon concentrating mechanism (CCM). This CCM involves pH elevation in the vacuoles mediated by Na⁺/H⁺ transporter and CO_{2(aq)} diffusion into the alkaline vacuoles. Li⁺ follows Na⁺ and when DIC is low this transporter brings more Li with low δ^7 Li into the vacuoles. At higher DIC levels the Li/Ca decreases and δ^7 Li is higher. These proxies are thus recorded in the foraminiferal shells according to the DIC levels in the seawater.

Using both $\delta^{11}B$ and δ^7Li we can now estimate both the DIC level of the past ocean and its pH and calculate $CO_{2(aq)}$ and atmospheric pCO₂. Existing records of δ^7Li in foraminifera agree with our pCO₂ estimates.

[1] Vigier Nathalie, Claire Rollion-Bard; Yael Levenson; Jonathan Erez, (2015) Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC), **CR Geoscience**