Constraining the influence of plant community change on the sedimentary *n*-alkane ²H/¹H record in a temperate saltmarsh

Y. ELEY1*, N. PEDENTCHOUK2 AND L. DAWSON3

 ¹Department of Archaeology, University of York, UK (*correspondence: yvette.eley@york.ac.uk)
²School of Env. Sciences, University of East Anglia, UK
³James Hutton Institute, Aberdeen, UK

Palaeohydrological studies typically interpret shifts in sedimentary *n*-alkyl lipid δ^2 H signals as evidence of changes in the δ^2 H of precipitation and/or aridity. This approach implicitly assumes that any temporal shift in plant species, which vary isotopically and in the amount of *n*-alkyl lipids they produce, is insignificant compared with the environmental δ^2 H signal. The purpose of this contribution is to assess the potential impact of plant community change on sedimentary *n*alkyl δ^2 H values, and evaluate methods for detecting and quantifying these vegetation shifts.

Firstly, we formulated a conceptual model to investigate the potential influence of vegetation change on the δ^2 H signal of the *n*-C₂₉ alkane incorporated into sediments at Stiffkey saltmarsh, Norfolk, UK. Secondly, we evaluated whether *n*-C₂₉ δ^{13} C values could detect changes in vegetation inputs to the marsh sediments. Finally, we considered whether a concentration-weighted isotope mixing model could identify and quantify vegetation shifts in the *n*-alkane record from a ~500yr old sediment core from Stiffkey.

Results from the conceptual model suggested that vegetation change alone could drive shifts of up to 40% in the δ^2 H signal of n-C₂₉ incorporated into sediments, with n-C₂₉ δ^{13} C values unable to identify inputs from the different C₃ plants at the marsh. Sediment core n-C₂₉ δ^2 H values showed a positive shift of 50% between 1630 and 1820, with an associated change of <1% in δ^{13} C. The isotope mixing model identified changing plant inputs down-core that coincided with this ²H/¹H excursion. As large-scale hydrological trends during this period are unlikely to fully account for this shift, we conclude our sedimentary δ^2 H record has been strongly influenced by changes in marsh vegetation cover.

These findings highlight that plant community change can play an important role in controlling sedimentary *n*-alkyl δ^2 H signals. Further, our results suggest that linked analysis of sedimentary *n*-alkyl δ^{13} C values may not detect vegetation shifts, especially in settings where C₃ plants dominate. New integrative approaches are therefore required to ensure that the role of plant community change can be fully accounted for when interpreting the sedimentary *n*-alkyl ²H/¹H record.