Hydrochemistry and quality of CO₂rich springs in Gyeongsang sedimentary basin, South Korea, as a natural analogue of CO₂ leakage from geologic carbon storage sites

HYUN-KWON DO¹, KYOUNG-HO KIM¹ AND SEONG-TAEK YUN^{1*}

¹Department of Earth and Environmental Sciences, Korea University, Seoul, Korea Email : styun@korea.ac.kr (*correspondence)

Although geologic carbon storage is the most effective way to reduce anthropogenic CO2 emissions, publics are still concerned about potential risks of CO₂ leakage from storage sites. Therefore, careful monitoring of the movement and leakage of CO2 is highly needed. Natural CO2-rich springs may provide useful insights on the groundwater quality impacts of CO2 leakage as well as on efficient parameters to monitor the CO₂ leakage. For this concern, we conducted hydrochemical and isotopic analyses of a total of 18 naturally seeping, cold CO2-rich springs in the Gyeongsang sedimentary basin, South Korea. CO₂-rich springs are characteristically high in alkalinity (average 2293±854 mg/L as CaCO₃) and total dissolved solids (average 2076±756 mg/L) but have near-neutral pH values (average 6.28±0.26). Carbon isotope compositions of dissolved carbonate are -3.2±1.6‰, suggesting that they formed through dissolution of CO2 that did ascend from a deep magmatic source. The oxygen and hydrogen isotope compositions of CO₂-rich springs are lower than ambient alkaline groundwater. These data indicate that the supply of CO₂ from depths to groundwater accelerated the dissolution of silicate and carbonate minerals constituting an aquifer. Comparison of hydrochemistry data between CO2-rich springs and ambient alkaline groundwater indicates that the following observations of groundwater can be useful to detect CO₂ leakage: 1) pH lowering and increases of the concentrations of a few solutes such as alkalinity, Ca and Mg and 2) the change of the carbon isotope compositions of dissolved inorganic carbon.