Monazite standards for δ^{18} O analysis by SIMS

A. DIDIER*, B. PUTLITZ, L. BAUMGARTNER AND A. S. BOUVIER

Institute of Earth Sciences, University of Lausanne, Quartier UNIL-Mouline, Bâtiment Géopolis, 1015 Lausanne, Switzerland (*correspondence: amelie.didier@unil.ch)

Monazite is a common accessory mineral often used for U-Th-Pb dating of processes occurring in metamorphic and igneous rocks. Monazite growth can be due to fluid-rock interaction, offering the potential of tracking and dating fluid flow with SIMS in a single mineral or even in a growth zone. Standards are widely available for SIMS dating, but they are rare for accurate oxygen isotope ratio determination ([1] and [2]). This scarcity of standards is problematic, because it is known that δ^{18} O analysis by ion microprobe is strongly affected by composition dependent instrumental mass fractionation (IMF). Here we show that IMF varies by 2 % δ^{18} O as a function of monazite compositions. Three new monazite standards were developed for SIMS analysis in the ternary composition space defined by the endmembers monazite (YREEPO₄, Mnz), cheralite (CaTh(PO_4)₂, Chr) and huttonite (ThSiO₄, Hut). Several monazites have been tested and we could retain three, which are suitably homogenous with Mnz_{0.99}, Mnz_{0.88}Hut_{0.09}Chr_{0.03} and Mnz_{0.82}Hut_{0.09}Chr_{0.08}. Their homogeneity in δ^{18} O has been confirmed by SIMS analyses and their true preliminary value, measured by laser fluorination, ranges between 8.5% and 10.5%. In addition we used the Moacyr and USGS-44069 monazites already characterized in [2]. IMF is inversely correlated to the YREEPO₄ content of monazite only. This result is disagree with [1] which suggests that IMF is dependent on the Th content only.

Breecker and Sharp (2007), *American Mineralogist* 92, 1561-1572.
Rubatto, Putlitz, Gauthiez-Putallaz, Crépisson, Buick, Zheng (2014), *Chemical Geology* 380, 84-96.