Water contents of natural zircons are controlled by their Y+REE contents

J.C.M. DE HOOG^{1*}, C.J. LISSENBERG², R.A. BROOKER³, R.W. HINTON¹, D. TRAIL⁴ AND E.W.G. HELLEBRAND⁵

 ¹School of GeoSciences, Univ. Edinburgh, EH9 3FE, UK (*correspondence: ceesjan.dehoog@ed.ac.uk)
 ²School of Earth and Ocean Sciences, Cardiff Univ., UK
 ³School of Earth Sciences, Univ. Bristol, UK
 ⁴Dept. Earth and Envir. Sciences, Univ. Rochester, USA
 ⁵Dept. of Geol. and Geoph., Univ. Hawai'i at Mānoa, USA

The water and trace element contents of non-metamict igneous zircons were determined to constrain the H incorporation mechanism and to evaluate the use of zircon to constrain water contents of melts [1]. Zircons from Fe-Ti oxide gabbros from the Vema Fracture Zone [2] contain up to 980 ppm H₂O, 1.4 wt% Y_2O_3 and 0.6 wt% P_2O_5 and are generally strongly Y+REE Р zoned. partially charge-balanced are by $(Y^{3+}+P^{5+}=Zr^{4+}+Si^{4+})$ but a large Y excess is present (Fig. 1A). On an atomic basis, this excess closely matches the amount of H present in the zircons (Fig. 1B). We therefore conclude that н is incorporated by а charge-balance mechanism $(H^++Y^{3+}=Zr^{4+})$. This is supported by FTIR data, which show a strongly polarised absorption band at 3100 cm⁻¹ similar to experimental Lu-doped hydrous zircons. No other absorption bands are visible, excluding a hydrogrossular-type exchange mechanism. Because of charge-balanced uptake of H, P and Y+REE in zircon, the partitioning of these elements into zircon is dependent on each of their concentrations. Hence, using H in zircon to determine water contents of melts is challenging. As Ce4+ partitioning is not affected, Ce anomalies may depend on H_2O and P_2O_5 contents of the melt, in addition to its oxidation state [3].

Figure 1: (A) P vs Y+REE (B) H+P vs Y+REE

[1] De Hoog *et al.* (2014) *Geoch Cosmoch Acta* 141, 472-486.
[2] Lissenberg *et al.* (2009) *Science* 323, 1048-1050.
[3] Trail et al. (2012) *Geoch Cosmoch Acta* 97, 70-87.