A partial late veneer for the source of 3.8 Ga Isua rocks: Evidence from highly siderophile elements and ¹⁸²W

C. W. DALE¹*, T. S. KRUIJER², K. W. BURTON¹, T. KLEINE² AND S. MOORBATH³

¹Dept. of Earth Sciences, Durham University, Durham, UK, * christopher.dale@durham.ac.uk

²Institut für Planetologie, University of Münster, Germany

³Dept. Earth Sciences, University of Oxford, UK

Highly siderophile elements (HSEs) are strongly sequestered into metallic planetary cores, leaving silicate mantles almost devoid of HSEs. Late accretion, after core formation had ceased, partially replenished HSEs in planetary mantles and occurred within a few million years of solar system formation on many parent bodies [1], but probably later on Earth, after a final episode of core formation associated with the giant Moon-forming impact. Ancient isolated domains in Earth's mantle - such as the source of 3.8 billion-year-old Isua basalts - might represent mantle isolated from late accreted material, as has been suggested based on their small ¹⁸²W excesses compared to the present-day Earth's mantle [2]. However, such ¹⁸²W excesses may also represent signatures of early differentiation processes in the Earth's mantle, which have been preserved through the giant impact [3]. To assess the origin of the ¹⁸²W anomalies and the ¹⁸²W composition of the pre-late veneer mantle, we determined the HSE abundances and ¹⁸²W compositions of a suite of mafic to ultramafic rocks from Isua.

Our data show that the Isua source mantle had HSE abundances at ~60% of the present-day mantle, inconsistent with isolation from the late veneer. For the same samples we obtained a 13±4 ppm ¹⁸²W excess over the modern terrestrial mantle, in excellent agreement with previous data [2]. A recent study argued that Earth's earliest mantle had higher ¹⁸²W than previously thought; indistinguishable from the revised value for the Moon of 27±4 ppm [4]. Using the late veneer composition of [4], we calculate that the Isua mantle source, containing 60% late veneer, would have a $^{182}\mbox{W}$ value of 9±4 ppm, in very good agreement with the measured value for Isua. The combined W-HSE data, therefore, are consistent with only partial addition of the late veneer to the Isua mantle source, and with the interpretation that the 27 ± 4 ppm ^{182}W excess of the Moon represents the 182 W composition of the prelate veneer Earth's mantle [4].

[1] Dale et al (2012) *Science* **336**, 72. [2] Willbold et al. (2011) *Nature* **477**, *195*. [3] Touboul et al. (2012) *Science* **335**, 1065-1069. [4] Kruijer et al. (2015) *Nature*, in press.