Chiavennite revisited: A temperature dependent in situ single crystal X-ray diffraction study

Georgia Cametti and Thomas Armbruster ${ }^{1}$

${ }^{1}$ Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland

Chiavennite $\left(\mathrm{CaMnBeSi}_{5} \mathrm{O}_{13}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Z}=4\right)$ is a rare $\mathrm{Be}-$ bearing zeolite mineral with an interrupted framework of fourconnected $\left[\mathrm{SiO}_{4}\right]$ and three-connected $\left[\mathrm{BeO}_{4}\right]$ tetrahedra. A sample from the type locality in the Rhetic Alps of Italy has been reinvestigated at room temperature in order to clarify the space group ambiguity discussed in the literature [1] and to explore the system of hydrogen bonds. In addition, the thermal stability of this zeolite was tracked by in situ single-crystal X-ray diffraction between 25 ${ }^{\circ} \mathrm{C}$ and $425^{\circ} \mathrm{C}$. In spite of the pseudo-orthorhombic cell dimension, the new data indicate that at room temperature chiavennite is truly monoclinic $P 2_{1} / c\left(B \approx 90^{\circ}\right)$ and twinned as recently shown for the new mineral ferrochiavennite [2]. The temperature-dependent dehydration experiments under dry conditions showed that chiavennite continuously released water up to at least $425{ }^{\circ} \mathrm{C}$ without topological modification. The loss of more than one $\mathrm{H}_{2} \mathrm{O}$ molecule at $250{ }^{\circ} \mathrm{C}$, decreases the Ca coordination from eight- to seven-fold. After release of the first $\mathrm{H}_{2} \mathrm{O}$ molecule, and strong dynamic disorder of the remaining $\mathrm{H}_{2} \mathrm{O}$, chiavennite evolves into orthorhombic symmetry of space group Pbcn. The continuous monoclinic-orthorhombic transition from space group $P 2_{1} / c$ to $P b c n$ upon dehydration is attributed to softening of the system of hydrogen bonds with extraframework $\mathrm{H}_{2} \mathrm{O}$ as donor and oxygen at the cavity walls as acceptor.
[1] Tazzoli, V., Domeneghetti, M. C., Mazzi, F., Cannillo, E. (1995), European Journal of Mineralogist 7, 1339-1344.
[2] Grice, J. D., Kristiansen, R., Friis, H., Rowe, R., Poirier, G. G., Selbekk, R. S., Cooper, M. A., Larsen, A.O. (2013), Canadian Mineralogist 51, 285-296.

