Using ²²⁴Ra/²²⁸Th disequilibrium to quantify benthic fluxes of dissolved inorganic carbon and nutrients into the Pearl River estuary

PINGHE CAI^{12*}, XIANGMING SHI¹², QINGQUAN HONG¹², QING $L1^{12}$, XIANGHUI GUO¹² AND MINHAN DAI¹²

¹State Key Laboratoty of Marine Environmental Science, Xiamen University, Xiamen 361005, P.R. China

(*Correspondence: Caiph@xmu.edu.cn)

²College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, P. R. China

We elaborate a newly developped ²²⁴Ra/²²⁸Th disequilibrium approach to quantify benthic fluxes of dissolved inorganic carbon (DIC) and nutrients into the Pearl River Estuary (PRE), China. Depth profiles of ²²⁴Ra and ²²⁸Th in bulk sediments were collected along a transect in the PRE. Together with bulk sediment measurements, dissolved ²²⁴Ra, DIC, and nutrients (NO₂⁻+NO₃⁻, NH₄⁺) in porewater and in the overlying waters were also determined. Benthic fluxes of ²²⁴Ra were estimated from the observed deficit of ²²⁴Ra in the sediments using a one-dimensional (1D) mass balance exchange model. We demonstrated that irrigation was the predominant process that controls solute transfer across the sediment-water interface, whereas molecular diffusion and sediment mixing together contributed <5% of the total ²²⁴Ra fluxes from bottom sediments. Based on the mass balance of water column ²²⁴Ra, an independent approach was proposed to estimate site-specific residence times of water mass. The results show that water residence times ranged from 0.7±0.1 to 4.9±1.1 d in the PRE.

In the upper several centimeters of sediments, dissolved ²²⁴Ra activities were generally well correlated with DIC and NH₄⁺ concentrations, indicating that ²²⁴Ra is an excellent proxy of these species. We were then allowed to utilize the ²²⁴Ra/²²⁸Th disequilibrium approach to derive reliable estimates of the benthic fluxes of DIC and NH₄⁺. We demonstrated that sediment interstitial waters delivered approximately $36\pm2\times10^9$ mol of DIC and $\sim 14\pm1\times10^9$ mol of NH₄⁺ into the PRE in the dry season. This benthic flux of DIC is equivalent to $\sim 15\%$ of the riverine input in this season. In terms of NH₄⁺, our results indicate that bottom sediments are a predominant source of water column NH₄⁺ in the PRE. Overall, our results suggest that porewater injection is an important process and must be considered in the mass balance of DIC and nutrients in estuaries