Vanadium isotopes – a potential new proxy for paleo-oceanography

A. $BRUSKE^{1*}$, S. SCHUTH¹, L. XU^2 , M. C. ARNOLD¹, N. PIERAU¹ AND S. WEYER¹

¹Leibniz University Hannover, Institute for Mineralogy, 30167 Hannover,Germany (*annika.brueske@hotmail.de)

²Chinese Academy of Geological Sciences, Institute of Mineral Resources, 100037 Beijing, China

Vanadium (V) has two stable isotopes with very different abundances (50 V = 0.25%, 51 V = 99.75%). It is, similar to U and Mo, a highly redox-sensitive metal. However in contrast to the latter, it occurs in nature in three different oxidations states (+3, +4, and +5). Therefore, fractionation of stable V isotopes is potentially a very sensitive redox indicator in low-temperature environment studies, e.g., in paleo-oceanography.

We determined the first δ^{51} V signatures of two profiles of early Cambrian black shales from the Niutitang formation in south China [1]. The V fraction was purified with a slightly modified ion chromatography method after [2] that quantitatively removed isobaric interferences of Cr and Ti on ⁵⁰V. Measurements were performed via standard-sample bracketing and high resolution-MC-ICP-MS (Thermo-Finnigan Neptune). In addition, we analysed U isotopes on the same samples according to the method described by [3].

The δ^{51} V values are given relative to an Alfa-Aesar standard solution. The samples showed variable δ^{51} V values ranging from -1.7 to -0.4% (average 2s.d. $\pm 0.1\%$, n=84). The δ^{238} U values range from -0.4 to +0.7% (average 2s.d. $\pm 0.05\%$). Interestingly, δ^{51} V and δ^{238} U values display a significant correlation. These coupled isotopic variations may be attributed to variations of redox conditions and likely trace events of coupled U-V mobilization and subsequent redeposition. As it is well known that microbes are capable of V cycling [4] and U isotopes appear to be a sensitive monitor for biotic U reduction [5], the coupled V and U isotope fractionation may indicate that microorganisms have been an important driver for U and V reduction in early Cambrian times.

[1] Xu L., et al. (2012) Chem. Geol. 318, 45-49 [2] Nielsen S., et al. (2011) Geostandards Geoanalytical Res. 35, 293-306 [3]
Weyer S., et al. (2008) Geochim. Cosmochim. Acta 72, 345-359 [4] Zhang J., et al. (2014) Chem. Geol. 370, 29-39 [5]
Stylo M., et al. (2014) Goldschmidt Conference Abstract #2404