The partitioning of oxidized sulfur between silicate melts and magmatic volatiles

ZOLTAN ZAJACZ¹

¹University of Toronto, Department of Earth Sciences, 22 Russell St., Toronto, ON, M5S 3B1, Canada, zajacz@es.utoronto.ca

Sulfur plays an essential role during the formation of magmatic-hydrothermal ore deposits and it is one of the major constituents in volcanic gases. Therefore, quantitative understanding of the effect of silicate melt composition, pressure and temperature on the volatile/melt parition coefficients of sulfur ($D_{\rm S}^{\rm volatile/melt}$) is a prerequisite for effective modeling of the above processes.

Systematic experiments were conducted to asses the effect of silicate melt composition and pressure on the volatile/melt partition coefficients of sulfur in piston cylinder and rapidquench Molybdenum-Hafnium Carbide pressure vessel apparati at T=1100-1240 °C and P=30-500 MPa. For the compositional series, Fe-free, synthetic ternary and quaternary aluminosilicate melt compositions were used and the compositional variables, such as the nominal ratio of nonbridging oxygen over tetrahedral cations (NBO/T) or the identity of the network modifier cations were varied independently, only one at the time. All these experiments were conducted at 1240 °C and 500 MPa. The results show that silicate melt composition has a very significant impact on $D_{s}^{volatile/melt}$, the values of which varied from 0.30±0.04 (1 σ) to 186 \pm 98 (1 σ). There is a pronounced increase in the D_s^{volatile/melt} with increasing degree of melt polymerization (i.e. decreasing NBO/T) observed both in calcium- and sodium aluminosilicate glasses. In addition, the identity of network modifier cations available for sulfate complexation also greatly impacts $D_s^{volatile/melt}$. The network modifier cations associate with sulfate groups in the following order of preference: Na~K>Ca>Mg~Fe(II). For example, sodium aluminosilicate melts show more than an order of magnitude lower $D_{S}^{\text{ volatile/melt}}$ than calcium aluminosilicate melts with identical NBO/T. Apparent equilibrium constants derived from the above experiments allowed successful prediction of $D_S^{volatile/melt}$ for natural basaltic andesite and phonolite glasses used for the pressure series experiments. These latter experiments showed that $D_S^{\text{volatile/melt}}$ decreases significantly with increasing pressure, independent of melt composition.