Depth distribution of solar wind He implanted into NASA Genesis targets.


1Hokkaido University, Japan (yuri@ep.sci.hokudai.ac.jp)
2Los Alamos National Laboratory, USA;
3Arizona State University, USA;
4California Institute of Technology, USA;
5National Institute for Materials Science, Japan;
6JEOL Ltd., Japan;
7Osaka University, Japan;
8Kyushu University, Japan;
9ETH Zurich, Switzerland.

NASA’s Genesis solar wind sample return mission is a unique experiment which allows us to probe the physics of ion-solid interaction by the solar wind and will provide an experimental basis for the analysis of natural samples irradiated by solar wind. For the first time, depth profiling of solar wind 4He has been done on a Genesis diamond-like-carbon film on silicon substrate (DOS) sample: Sputtered neutral mass spectrometry (SNMS) with post-photoionization by strong field was used. Ion intensities of the post-ionized isotopes were converted to concentrations by comparing with ion intensities from a DOS standard that was implanted 4He+ ions of 15 keV.

The depth profile represents a measured layer of 140 nm in depth with a size of 2.5 × 4 µm². The peak concentration of implanted solar wind 4He is about 2.2 × 10^20 cm⁻³ at ~20 nm in depth. The implantation profile is traced to 100 nm in depth until the blank level is reached which result from 4He from the photo-ionization of residual 4He gas in the vacuum and from sputtered 4He absorbed on the surface from the vacuum during measurements. The blank corresponds to ~3 × 10^18 cm⁻³. The solar wind 4He fluence calculated by the depth-profiling method (~8.5 × 10¹⁴ cm⁻²) is consistent with those determined by previous laboratory measurements.

The solar wind 4He distribution in the DOS sample was compared with a calculated distribution by TRIM using the solar wind energy distribution during Genesis mission by ACE/SWICS. The projected range, peak concentration and concentration at a given depth are simulated by TRIM if an appropriate density parameter is adopted. Assuming He has the highest mobility of all elements other than H, this analysis demonstrates that all solar-wind elements heavier than H are completely intact in this Genesis collector material. Consequently, the solar-wind energy distribution can, ideally, be calculated from measured depth profiles, and the profiles can be useful for understanding ancient solar activities experienced by natural samples, as well as space weathering evolution of solar system objects.