Carbonate mineralization of Bischofite under a mild condition

XIZHI YAO¹, CHEN ZHU² AND LIANG ZHAO^{3*}

¹School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, P.R. China yaoxizhi0124@smail.nju.edu.cn
²zhuchen.nju@gmail.com
³zhaoliang@nju.edu.cn

Minerals rich in Mg are promising raw material for carbon dioxide (CO₂) sequestration because of their sufficient amount on earth. It has been reported that Qaidam Basin—located in the northwest of China—stores more than 2 billion tons of Bischofite (MgCl₂·6H₂O), which theoretically can sequester more than 800 million tons of CO₂. Furthermore, Bischofite is a byproduct of sea water desalinization, which could also be utilized by areas close to shoreline for CO₂ sequestration purpose.

A new Mg^{2+} based CO_2 mineral sequestration process has been designed to optimize the carbonation reaction rate under mild conditions. In this process, ammonia is used as a base to keep pH of absorption solution in suitable ranges avoiding formation of Brucite [Mg(OH)₂]. In addition, due to the extremely high solubility of Bischofite, no extra energy is needed to leaching Mg^{2+} . The maximum CO_2 absorption efficiency can reach 98% if CO_2 residence time Tr was kept around 15s, accompanied by the highest nesquehonite production rate of 0.24 mol·L⁻¹·h⁻¹. XRD and TGA analysis show that 95% of the solid product is nesquehonite. The successful test of the new CO_2 mineral sequestration process confirms its potential to be pushed to large-scale industrial application in future.