²³⁹Pu and ²⁴⁰Pu inventories and ²⁴⁰Pu/²³⁹Pu atom ratios in the Andaman Sea water column

MASATOSHI YAMADA^{1*}, JIAN ZHENG², TATSUO AONO³ AND HIROFUMI TAZOE¹

¹Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan, (*correspondence: myamada@hirosaki-u.ac.jp)

²Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan (jzheng@nirs.go.jp)

³Fukushima Reconstruction Support Headquarters, National Institute of Radiological Sciences, Chiba, Japan (t_aono@nirs.go.jp)

Introduction

Significant quantities of Pu isotopes have been released into the marine environment as the result of atmospheric nuclear weapons testing. The dominant source of anthropogenic radionuclides in the early 1960s can be attributed to global stratospheric fallout from atmospheric nuclear weapons testing by the former Soviet Union. In the Pacific Ocean, there were significant contributions from closein tropospheric fallout as a result of atmospheric tests on Bikini and Enewetak Atolls at the Pacific Proving Grounds in the Marshall Islands. Since the 240 Pu/²³⁹Pu atom ratio is characteristic for the Pu emission source, information on the Pu isotopic signature is very useful to better understand the transport process in the oceans and to identify the sources of Pu [1]. The objective of this study was to measure the $^{239+240}$ Pu concentrations and 240 Pu/²³⁹Pu atom ratios in seawaters of the Andaman Sea.

Results and discussion

The ²³⁹⁺²⁴⁰Pu concentration was 1.3 mBq/m³ in the surface water; a sharp maximum was identified at 200 m depth and then the concentration decreased gradually with depth. The ²³⁹Pu, ²⁴⁰Pu and ²³⁹⁺²⁴⁰Pu inventories in the entire water column were 9.6, 8.2 and 17.8 Bq/m², respectively. The ²⁴⁰Pu/²³⁹Pu atom ratios ranged from 0.22 to 0.23. These ratios were slightly lower than those observed in the South China and Sulu Seas and were higher than the mean global fallout ratio of 0.18. These high atom ratios proved the existence of close-in tropospheric fallout Pu from the Pacific Proving Grounds.

[1] Yamada & Zheng (2012) Sci. Total Env 430, 20-27.