Geochemical and isotopic evolution of thermal water of São Miguel, Azores (Portugal)

J. WOITISCHEK 1^* , M. DIETZEL 1^1 , J. V. CRUZ 2^2 , A. LEIS 3^3 and M. E. BÖTTCHER 4^4

¹Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria (*correspondence: j.woitischek@student.tugraz.at)

²CVARG, Department of Geoscience, University of Azores, Ponta Delgada, Portugal

³Institute of Water, Energy and Sustainability, Joanneum Research, Elisabethstraße 18, 8010 Graz, Austria

⁴Leibnitz- Institute for Baltic Sea Research (IOW), Geochemistry and Stable Isotope Biogeochemistry Group, D-18119 Warnemünde. FGR, Germany

Thermal water of São Miguel has been investigated to decipher its geochemical and isotopic evolution as a case study for the development of a geothermal system in an evolving basaltic ocean island. Besides water, precipitates and local volcanic rocks were sampled for analyses. From isotope, geochemical, microstructural and mineralogical data a conceptual model for water evolution in São Miguel (Furnas, Fogo, and Ferraria) was developed.

Thermal discharges were divided into springs (up to 75 °C) and boiling pools, and classified by dominant dissolved ions in Na-SO₄, Na-HCO₃ and Na-Cl types. In Furnas, at higher temperature the concentrations of $Si(OH)_4$, K⁺ and Sr²⁺ increased through intensive alteration of basaltic rocks, whereas in contrast Al^{3+} and ΣFe concentrations decreased by precipitation of e.g. alunite. In Fogo, at higher altitude in particular CO_2 rich water at T ≈ 20 °C occurs. In this case the extent of basaltic rock leaching rather depends on uptake of volcanic CO₂ than on temperature. HCO₃⁻ concentration and its isotopic composition ($\delta^{13}C(DIC) = -5 \pm 3 \%$ V-PDB) reflect evolved CO₂ uptake and subsequent leaching progress. High SO₄ concentration of up to 16.5 mmol L⁻¹ with $\delta^{34}S(SO_4)$ = 0.35 \pm 0.3 % (V-CDT) are reflecting magmatic origin which mainly controls water chemistry of boiling pools of both Fogo and Furnas. Lowest $\delta^{34}S(SO_4) = -3.7 \% (V-CDT)$ are by stromatolite-like microstructures in accompanied the precipitates. In Ferraria water is discharging from a basal aquifer and belongs to the Na-Cl type, where stable hydrogen and oxygen isotopes reveal mixing of meteoric and sea water. The molar Mg/Caratio (0.77) of all thermal discharges reflects leaching of analysed local basalt (Mg/Ca ≈ 0.78).