High-precision U/Th dating by MC-ICP-MS and its applications on carbonate samples

XIANFENG WANG^{12*}, HONG-WEI CHIANG¹ AND KE LIN¹

¹Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798

²Asian School of the Environment, Nanyang Technological University, Singapore 639798

*xianfeng.wang@ntu.edu.sg

We have set up U/Th dating techniques on a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS, a Thermo Scientific Neptune Plus) at the Earth Observatory of Singapore, accompanying with an ultra-clean geochemistry laboratory for actinide element separation and purification. When the instrument is equipped with a large interface pump (OnTool Booster pump), Jet sample cone, and X-skimmer cone, and coupled with a CETAC Aridus II desolvating nebulizer system and a PFA ESI-50 nebulizer, we routinely obtain an ionization efficiency of ~4%. Using the SEM peak-jumping mode, we can achieve a precision of $\pm 1-$ 2‰ (2 σ) for abundance determination of ~20 fg ²³⁴U or ²³⁰Th.

To test the robustness and accuracy of our measurements, we first refined the chemistry processes to reduce procedural blanks, and the chemistry blanks for ²³⁸U, ²³²Th and ²³⁰Th can be routinely measured as 0.005 ± 0.005 pmol, 0.0005 ± 0.0005 pmol, and 0.0001 ± 0.0001 fmol, respectively. In addition to run the NBL-112A uranium standard solution on the instrument ($\delta^{234}U$ \sim -38.5 \pm 1.0 % in a year-long reproducibility), we further tested our chemistry and instrument methods using two carbonate samples with known ages. For a stalagmite sample collected in 2003 A.D. and with a fresh top, we obtained a U/Th age of 1996.8 \pm 0.8 A.D. on a subsample about 4-6 bands below its top. For a living coral collected in 2013 A.D., we obtained 2002.5 \pm 1.3 A.D. on the year band of 2003 A.D. For a secular equilibrium flowstone sample, we obtained values of δ^{234} U and $(^{230}$ Th/ 238 U)-activity as $1.5 \pm 1.5 \%$ and 1.0002 ± 0.0032 , respectively. The U/Th dating methods have also been successfully applied to a variety of carbonate samples, including speleothems, corals (shallow water and deep sea), tufa, and soil carbonates.