The relationships between the peaks of mantle convection energy, surface heat flow, and crust-mantle differentiation

U. WALZER^{1^*} AND R. HENDEL¹

¹F.-Schiller-Universität, Humboldtstr. 11, 07743 Jena, Germany

We present a numerical study on the chemical and thermal evolution of a 3-D spherical-shell mantle based on radial distributions of viscosity, Grüneisen and other parameters. We discuss latest geochemical proposals but arrive at a chondritic mantle. Assuming this, we conclude: The mode of early mantle convection is not necessarily bound to plate tectonics. Bulk convection is energetically dominating. Not the whole mantle is depleted but only half. Below lithosphere-asthenosphere boundary there is no distinct chemical layering but a marblecake structure. Upper mantle is more depleted than lower mantle. Best agreement between observed and computed total continental-crust [CC] size is found for $r_n=0.5$ (this is a number 10⁸) and for thermal conductivity, Rayleigh $k=5.0W/(m \cdot K)$. Kinetic convection energy, E_{kin} , and surface heat flow, qob, slowly decreases but show also augmentedactivity and thermal peaks. Calculated near-present qob approximate measurements. We vary r_n , k, viscoplastic yield stress $(=\sigma_y)$ and melting-criterion parameter $(= f_3)$. For a restricted (r_n, σ_y, k, f_3) -space, we find *simultaneous* agreement with all observations. For $r_n = 0.5$, $\sigma_y = 120 MPa$, and optimal (k, f_3) space, the time lag between qob-peak and corresponding crust-mantle-differentiation peak is 50 to 75Ma, time lag maximum mantle-convection intensity between and subsequent differentiation peak is 80 to 100Ma. For 4490 Ma to presence, average temperature drop is 210K. Observations reveal, in late Archean 50 to 70% CC existed. Our model predicts 60.4 to 75.7%. We find crustal growth episodicity. Please go to www.geodyn.uni-jena.de