The thermodynamics of hydroxylbastnasite in aqueous solutions

M. VOIGT1*, B. VALLINA2, J. D. RODRIGUEZ-BLANCO3, L. G. BENNING2,4 AND E. H. OELKERS5

1GET/CNRS, 14 avenue Édouard Belin, 31400 Toulouse, France (*correspondence: martin.voigt@get.obs-mip.fr)
2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
3Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København, Denmark
4GFZ - Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany
5Earth Sciences, UCL, Gower Street, London, United Kingdom

The mobility of rare earth elements (REE) in natural aqueous solutions is of increasing interest due to their application in numerous high-tech and renewable energy technologies (e.g., wind turbines, electric vehicles) [1], as well as their critical role as tracers in Earth Sciences. Data for basic thermodynamic parameters for water-rock interactions are, however, sparse and partially inconsistent (e.g., [2]), even for carbonate minerals of the bastnasite group (REE(CO3)(OH,F)), which currently represent the most exploited REE ore [1]. Therefore, experiments were carried out to quantify these parameters.

Pure hexagonal hydroxylbastnasite (REE(CO3)(OH)) was synthesized at hydrothermal conditions ([3]) and subsequently used as starting material for experiments in aqueous solutions. Closed system dissolution and precipitation experiments were performed in equilibrium with air (log(pCO2)=-3.34(1)) as well as with fixed amounts of dissolved inorganic carbon. Reaction progress was followed by measuring pH, and REE concentrations were quantified by ICP-MS at regular intervals.

Experiments at 25 °C and selected concentrations of HCl and NaOH were run for up to 1.5 months until steady-state pH and Nd was observable. The results from closed system experiments suggest that the solubility product (Ksp) for hydroxylbastnasite-Nd (HB-Nd), corresponding to the reaction Nd(CO3)(OH)HB-Nd = Nd4+ + CO3²⁻ + OH⁻, has a value of log(Ksp)=-23.83(40) at 25 °C.