$\begin{array}{c} Variations \ \Delta^{17}O \ of \ H_2O_2 \ formed \ in \\ electrical \ discharge \ with \ water \ vapor \\ and \ oxygen \end{array}$

T. A. VELIVETSKAYA*, A. V. IGNATIEV, V. V. YAKOVENKO AND S. Y. BUDNITSKY

Far East Geological Institute, Vladivostok-22, Russia (*correspondence: velivetskaya@mail.ru)

Hydrogen peroxide (H₂O₂), being an important oxidant in the Earth's atmosphere, plays a crucial role in many atmospheric chemical cycles. The isotope anomaly (Δ^{17} O) of H₂O₂ has been detected in rainwater [1] and laboratory experiments [2]. The $\Delta^{17}O$ anomalous of H_2O_2 derived from the photochemical produced ozone that possess excess ¹⁷O [3]. Here we report results of laboratory experiments to measure the effect of $\Delta^{17}O$ in H_2O_2 formed from water vapor using a spark discharge in a helium continues flow system. The reaction was run into a glass reactor where water vapor was passed by bubbling helium flow (30 mL/min) through a water sample (1mL) at 100°C. The outflow from the reactor passed through a trap at liquid nitrogen temperature to collect the product of reaction. To investigate the variations of Δ^{17} O in H2O2, molecular oxygen O2 was added to helium flow before it entered the reactor and was present at various concentrations at the reaction point. The oxygen isotopic composition of H₂O₂ was analyzed using KMnO₄ and MnO₂ and was measured with a MAT-253 mass spectrometer running in continuous flow mode. Precision of analyses was tested using solutions of commercial H_2O_2 (standard deviation of 0.6 % for $\delta^{18}O$, 0.3% for $\delta^{17}O,~and~0.05\%$ for $\Delta^{17}O).$ Laboratory experiments demonstrated that isotopic variations in produced H_2O_2 depended on the concentrations of O2 and were found to be: (a) Δ^{17} O= 1.3-1.5% with the δ^{18} O value insignificantly different from the initial $\delta^{18}O$ value of water if the concentration of O_2 was very low (in the range of ~10⁻⁶ % of the present atmospheric level (PAL)); (b) $\Delta^{17}O=2.5-3.0\%$ with enriched in both ¹⁸O and ¹⁷O by 20-30% compared to the initial water as the concentration of O2 increased to ~0.001, 0.01, and 1% of PAL. Note that the content of H2O2 produced in the spark discharge was in range of (5-9)·10-5 mol/L and weakly correlated with the O2 concentrations at the reaction point. This study was supported by the Russian Foundation for Basic Research, grant # 15-05-00794

[1] Savarino & Thiemens (1999) *Atmos. Environ.* **33**, 3683-3690. [2] Shaheen *et al.* (2010) *PNAS* **107**, 20213–20218. [3] Thiemens & Heidenreich (1983) *Science* **219**, 1073-1075.