⁹⁹Tc incorporation and removal by iron mineral transformation

WOOYONG UM^{12*}, GUOHUI WANG¹, R. JEFFREY SERNE¹ AND JOSEPH H. WESTSIK JR.¹

 ¹Pacific Northwest National Laboratory, Richland, WA, USA
²Pohang Univ. of Sci. and Technol.(POSTECH), South Korea wooyong.um@pnnl.gov (* presenting author)

Introduction

Technetium is generated in large quantities as a fission product in making of nuclear weapons and by irradiation of ²³⁵U-enriched fuel during production of commercial power. Environmental concerns have been raised because of the long half-life and high mobility of ⁹⁹Tc in oxidizing subsurface environments. Even though reduced ⁹⁹Tc(IV) is more immobile, the reoxidation of ⁹⁹Tc(IV) by changing conditions is fast and results in a subsequent release of ⁹⁹Tc into the environment. Incorporation and retention of ⁹⁹Tc into Fe mineral is suggested to increase ⁹⁹Tc removal and limit ⁹⁹Tc reoxidation.

Results and Discussion

The results of mineral transformation tests using three synthesized Fe(OX)/hydroxide minerals [ferrihydrite, magnetite, and $Fe(OH)_2(s)$] showed that $Fe(OH)_2(s)$ transformed easily to a mixture of magnetite, maghemite, and goethite even at room temperature (RT) and circumneutral pH conditions. The transformation product from ferrihydrite with $^{99}Tc(VII)$ bearing alkaline solutions was solely goethite mineral in most of the conditions. Transformation product from reacting magnetite with $^{99}Tc(VII)$ bearing alkaline solutions was very limited and there were only small amounts of maghemite and goethite formed under high pH and temperature conditions. In addition, negligible ^{99}Tc removal from solutions was found in the resultant slurry when magnetite or ferrihydrite was used without aqueous Fe(II) addition.

Even though the most transformation products were found at high pH (~12) and temperature (75-80°C) conditions, $Fe(OH)_2(s)$ can be used as an initial substrate for ^{99}Tc removal due to its high reactivity. Removal of ⁹⁹Tc from solution by Fe(OH)₂(s) was fast and more than 95% of the initial 99 Tc (10⁻⁵ M) was removed from solution by the Fe(OH)₂(s) transformation product, even without aqueous Fe(II) addition. Because $Fe(OH)_2(s)$ is oxidized to form magnetite (Fe₃O₄) by reacting with H₂O even in anoxic condition, the presence of $Fe(OH)_2(s)$ can provide aqueous Fe(II) to reduce 99Tc(VII) to ⁹⁹Tc(IV). In addition, because the final pH of a slurry mixed with ⁹⁹Tc and Fe(OH)₂(s) was fairly alkaline (pH = 9–11.5), ⁹⁹Tc removal was not considered to be from surface adsorption, but rather incorporation into transformed mineral product. Mineral transformation from Fe(OH)2(s) to a more stable Fe (oxy)hydroxide mineral can be used to effectively remove 99Tc(VII) in alkaline pH conditions germane to off-gas scrubber secondary waste and Hanford low-activity waste streams.