Complex microbial ecosystems recorded in sulfur and oxygen isotopes of carbonate associated sulfate in the Monterey Formation, California, U. S. A.

BETHANY P. THEILING¹² AND MAX COLEMAN^{12*}

¹NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, U.S.A., max.coleman@jpl.nasa.gov (*presenting author)
²NASA Astrobiology Institute, Wisconsin Astrobiology Research Consortium

 $\delta^{34}S$ and $\delta^{18}O$ analyses of carbonate associated sulfate (CAS) and mineralogical evidence illustrate a complex microbial ecosystem within the phosphate-rich interval of the Miocene Monterey Formation. All δ^{34} S and δ^{18} O are below Miocene seawater values (~+22‰, VCDT and ~+12‰, VSMOW). δ^{34} S values range from +12.2‰ to +18.5‰ and δ^{18} O range from +2.7% to +17.7%, demonstrating a positive linear correlation. $\delta^{34}S$ of insoluble sediments (combined pyrite and organic sulfur), used as a proxy for bacterially generated H₂S, range from 5.6‰ to 8.4‰. Sulfate reducing bacteria (SRB) drive the residual seawater sulfate pool to higher $\delta^{34}S$ values and generate low $\delta^{34}S$ H_2S (~14% lower than seawater sulfate). Initially, H₂S from SRB and Fe²⁺ produced by iron-reducing bacteria (FeRB) generated small amounts of pyrite until all available Fe³⁺ was consumed. With no available Fe^{2+} , H_2S reduced from sulfate by SRB diffused upward to the oxic-suboxic zone boundary where sulfide oxidizing bacteria (SOB) used molecular oxygen to re-oxidize H_2S to sulfate that retains the low $\delta^{34}S$ of the H_2S . Total sulfate δ^{18} O values produced by re-oxidation of H₂S record a mixture of the sulfate pool higher δ^{18} O and lower δ^{18} O of sulfate from oxidized H₂S. Observed δ^{34} S and δ^{18} O lower than seawater sulfate illustrate that the δ^{34} S versus δ^{18} O line defines a mixing line between the endmembers: total reduced sulfur δ^{34} S combined with fractionated atmospheric δ^{18} O [1], and Miocene seawater sulfate δ^{34} S and δ^{18} O. This interpretation is supported by low CaCO₃ and high phosphate concentrations, whereby SOB promote decreasing seawater pH by production of a small amount of sulfuric acid, which inhibits the precipitation of CaCO₃ while promoting preservation of phosphate [2]. These results demonstrate that the phosphate-rich interval of the Monterey Formation records a complex suite of FeRB, SRB, and SOB, illustrated by δ^{34} S and δ^{18} O analyses of CAS.

[1] Ziegler (2008) *AGU Fall Meeting Abstracts*, P53D-03 [2] Nathan and Sass (1981) *Chem. Geol.* **34**, 103-111