O₂-based NCP estimates from underway and Bio-Argo float data

BITTIG, H. C. 12* , Körtzinger, A. 1 , Claustre, H. 2 , Tortell, P. D. 3 , Hoppema, M. 4 and Jones, E. M. 5

¹Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany (*correspondence: hbittig@geomar.de)

²Laboratoire d'Océanographie de Villefranche (LOV),

Villefranche-sur-Mer, France

³University of British Columbia, Vancouver, Canada

⁴Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany

⁵University of Groningen, Groningen, Netherlands

Net community production (NCP) estimates based on autonomous O_2 measurements are becoming a routine technique. Here we illustrate with data from the Antarctic continental shelf how the interpretation of underway O_2 (ΔO_2 /Ar) observations can be validated by simulataneous N_2 and pCO_2 measurements [1]. Moreover, we demonstrate that Bio-Argo float O_2 data can be used to derive a reliable NCP estimate in the open ocean Atlantic subtropical gyres [2].

Surface underway O_2 measurements are often used to derive mixed layer NCP by a mixed layer mass balance approach. This depends strongly on the parameterization of air-sea gas exchange. By concurrent observation of inert gases (e.g., N₂, Ar), the air sea flux parameterization can be validated at in-situ conditions. Moreover, our O₂-based NCP estimate was corrected for vertical biogenic entrainment fluxes using a simple box model. Results for O₂-based and DIC drawdownbased NCP agree well and regional patterns of high NCP match low *p*CO₂ regions. The derived CO₂ fluxes are more ingassing than the climatological CO₂ flux.

In contrast to surface measurements, O_2 profiles can yield both surface and sub-surface productivity. However, O_2 profiles have only been used for NCP estimates near time series sites or extensive ship surveys. Here we demonstrate that recent advances in optode characterization and quality control measures make a water column productivity estimate away from regular in-situ referencing possible. Careful analysis of Bio-Argo O_2 data provides a reasonable lower bound on NCP in the North and South Atlantic subtropical gyre.

[1] Tortell, P. D., Bittig, H. C., Körtzinger, A., Hoppema, M., and Jones, E. M. (2015) Biological and physical controls on N_2 , O_2 and CO_2 distributions in contrasting Southern Ocean surface waters. *Global Biogeochem. Cycles*, in press, doi:10.1002/2014GB004975. [2] Bittig, H. C., Körtzinger, A., and Claustre, H. (2015), O_2 -based NCP in the open ocean Atlantic subtropical gyres from Bio-Argo floats. in prep.