Fractionation behavior of ²³⁸U-series nuclides during acid leaching of basaltic samples

R. TANAKA^{1*}, T. YOKOYAMA¹², H. KITAGAWA¹, D. B. TESFAYE¹ AND E. NAKAMURA¹

¹PML, ISEI, Okayama Univ., Misasa, 682-0193, Japan (*correspondence: ryoji@misasa.okayama-u.ac.jp)
²Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

Measurement of ²³⁸U–²³⁰Th radioactive disequilibria shows potential for determining eruption ages younger than ca. 0.4 Ma. For the determination, it requires analyses of multiple phases by isochron methods, of which samples are assumed to have been homogeneous in ²³⁰Th/²³²Th at the time of eruption. Acid-leaching treatment can be useful for obtaining a wide range of (²³⁸U/²³²Th) from groundmass if no preferential fractionation among ²³⁸U, ²³²Th, and ²³⁰Th occurs during leaching. In this study, we assessed the presence and extent of preferential fractionation between ²³⁸U, ²³²Th, and ²³⁰Th by acid leaching for various types of basaltic samples (basanite, alkaline basalt, olivine tholeiite, and quartz tholeiite) with eruption ages sufficiently old (>0.5 Ma) to achieve ²³⁰Th–²³⁸U secular equilibria.

Acid leaching of these samples results in ²³⁰Th–²³⁸U and ²³⁴U–²³⁸U radioactive disequilibria for both leachates and residues. These radioactive disequilibria can be explained by redistribution of ²³⁴Th (parent of ²³⁴U) and ²³⁰Th between acid-soluble and acid-resistant phases due to α -recoil. The number of ²³⁰Th atoms redistributed by α -recoil can be calculated by using a mass conservation equation for ²³⁴U atoms and by the relative amount of recoiled ²³⁰Th and ²³⁴Th, the latter proportional to the kinetic energy of the recoiled nuclide. When the fraction of daughter nuclide ²³⁴U remaining in either the residue or leachate, after α -recoil redistribution of ²³⁸U, is large enough (>95%), the corrected (²³⁰Th/²³⁸U) values of leachate and residue show radioactive equilibria.

This result demonstrates that preferential fractionation between U and Th does not occur during acid leaching for basaltic samples if there is no selective etching of the α -recoil track. It implies that acid-leaching can be used in conjunction with the ²³⁸U–²³⁰Th internal isochron method for dating young volcanic rocks by evaluating the degree of the α -recoil redistribution of ²³⁴U.