Re-Os and the Permo-Triassic mass extinction, Hovea-3, Perth Basin, western Australia

H. J. STEIN123, G. YANG1, K. GRICE3, S. V. GEORGIEV1 AND J. L. HANNAH12

1AIRIE Program, Colorado State University, USA
2CEED Centre of Excellence, University of Oslo, Norway
3WA-OIGC, Curtin University, Perth, Western Australia

Re-Os isotope geochemistry on a well-studied onshore section in the Perth Basin helps define the global reach of marine-terrestrial poisoning leading to the greatest Phanerozoic mass extinction. The lowermost Kockatea Shale (Hovea Member) from drill hole Hovea-3, debatably [1], may contain the complete sedimentological and biological record from latest Permian into earliest Triassic [2]. The Hovea Member contains an upper Sapropelic Interval (algal, finely laminated shale-limestone, pyritic, no bioturbation) and a lower Inertinitic Interval (charcoal, wood debris, siltstone-shale, variably bioturbated). The boundary between Intervals, designated as the Permo-Triassic (P-Tr) division, is visually subtle, but chemically and biologically abrupt and without transition (e.g., the C3 alkylcyclohexane is only present in the Early Triassic [1]). Our 6-cm core section (1981.25-1981.31m) is positioned just 30 cm below the P-Tr boundary.

We report the first radiometric age for this shallow marine section. Using all analyses, a 7-point Model 3 isochron age of ~252 Ma (±1%, MSWD=1.1) places the core section at the P-Tr boundary. A slightly older 5-point Model 1 age of ~255 Ma (±0.5%, MSWD=2.3) is possible if two points are eliminated without reason. A remarkable <2 cm interval within this 6-cm core records a 10-fold increase in Re and a jump in \(^{187}\text{Re}/^{188}\text{Os}\) to nearly 2500. The background single digit ppb Re and abrupt increases in Re and \(^{187}\text{Re}/^{188}\text{Os}\) are reminiscent of those in latest Permian shales from East Greenland and the mid-Norwegian shelf; this combination argues for warm and acidic seawater in the latest Permian [3]. Significantly, the Boreal section was deposited in an open but nascent seaway, whereas the Hovea-3 section developed on the margin of the restricted Tethyan Sea. Continued work on Hovea-3 will determine the extent and severity of Re intoxication, whereas our work thus far captures a remarkable poisoning and cleansing of seawater within the span of a few mm of sediment. Our Re-Os data indicate the globally delicate and transient state of latest Permian seawater punctuated by variable metal input and/or redox drawdown.

Support - CHRONOS and ARC Discovery Dora projects.