Diamond growth in the lithospheric mantle: New SIMS and Raman evidence from Zimbabwe diamonds

KAREN V. SMIT^{1*}, STEVEN B. SHIREY², ANDREW STEELE³, RICHARD A. STERN⁴ AND WUYI WANG¹

¹GIA, New York, NY, USA *ksmit@gia.edu.

²DTM, Carnegie Institution for Science, Washington, DC, USA.

³GL, Carnegie Institution for Science, Washington, DC, USA. ⁴CCIM, University of Alberta, Edmonton, AB, Canada.

Mixed-habit diamonds from the eastern Zimbabwe craton have octahedral sectors enriched in nitrogen, and cuboid sectors with hydrogen-containing defects (as VN_3H ; [1]). The high nitrogen and hydrogen content, and mixed crystallographic state of these diamonds provide the opportunity to evaluate C-N-H bearing fluids and diamond growth mechanisms in the lithospheric keel.

Octahedral sectors are free of any inclusions. Cuboid sectors in these diamonds trap CH_4 -rich fluid inclusions (Raman peaks at 2917 cm⁻¹) associated with graphite; and also have $\delta^{13}C$ and N content co-variations suggestive of Rayleigh fractionation from oxidised source fluids.

SIMS traverses for δ^{13} C- δ^{15} N in the suite support a mixing trend from more CH₄-rich sources to later rim growth from more CO₃-/CO₂-rich sources. Calculated diamond source fluid compositions are between δ^{15} N +4 and + 8 ‰ (using Δ^{15} N_{diam-fluid} of -4.9 ‰; not redox dependent; [2]), requiring that both CH₄-rich and CO₃-/CO₂-rich fluids have a recycled metasedimentary component as could occur with subduction of eclogite.

Subduction fluids in equilibrium with an eclogitic bulk composition will be H₂O-rich and contain CO₂, CH₄ and CH₃CH₂COO⁻ [3]. When such a fluid cools down, either isobarically, or through upwards percolation, it loses carbon solubility leading to diamond precipitation [4]. The lithosphere has a limited ability to act as either a source or sink of O₂ [4], and thus diamond precipitation by cooling can occur without carbon reduction or oxidation. Precipitation of diamond from mixed C-H-O fluids could proceed according to: CO₂+ CH₄ \Leftrightarrow 2C + 2H₂O [5]. This model can reconcile trapped reduced CH₄ inclusions with oxidised growth suggested by the δ^{13} C-N data.

[1] Goss et al., 2014. Journal of Physics: Condensed Matter, 26, 145801 [2] Petts et al., 2015. Chemical Geology, submitted [3] Sverjensky et al., 2014. Nature Geoscience, 7, 909-913 [4] Luth and Stachel, 2014. Contributions to Mineralogy and Petrology, 168, 1083. [5] Deines, 1980. Geochimica et Cosmochimia Acta, 44, 943-961.