Radioiodine transfer from seawater into seaweed

TOSHIHIRO SHIBATA*, YOSHIRO ISHIKAWA, Yuichi Takaku and Shun-ichi Hisamatsu

¹Institute for Environmental Science, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori, Japan (shibatt@ies.or.jp)

Introduction

A small and controled amount of ¹²⁹I has been released into the Pacific Ocean from the Japanese first commertial nuclear fuel reprocessing plant of JNFL which is located in Rokkasho, Aomori prefecture, Japan. Although the radiation dose from the released ¹²⁹I was negligebly small, the prediction of behavior of the ¹²⁹I is an important theme for public acceptance of the plant. Iodine takes various chemical forms in seawater and different behaviors depending on the chemical forms. It is important for better understanding the transfer of ¹²⁹I from seawater to organisms to know the transfer rate coefficient of ¹²⁹I in each chemical form in seawater. We exprimentally obtained the transfer rate coefficients of I⁻ and IO₃⁻ for a green and a brown alga by using ¹²⁵I tracer and report the results here.

Materials and method

A green alga (*Ulva prolifera*) and brawn alga (*Sargassum horneri* (Turner) C. Agardh) were exposed to ¹²⁵I[•] or ¹²⁵IO₃⁻ in a closed cultivation system. A part of the alga was sequentially sampled, and measured for ¹²⁵I concntration. The concentration of ¹²⁵I[•] and ¹²⁵IO₃⁻ in seawater in the system was monitored during the experiment period.

Results

Concentration of ¹²⁵I in the samples of both algae exposed to ¹²⁵I or ¹²⁵IO₃⁻ was alomostly saturated within 2 d with the higher maximum ¹²⁵I concentration in the samples exposed to ¹²⁵I⁻ than that exposed to ¹²⁵IO₃⁻. Since the concentrations of ¹²⁵I⁻ and ¹²⁵IO₃⁻ in seawater were more or less changed with time during the experiment period excluding ¹²⁵IO₃⁻ exposure to the green alga, the results were analyzed with a compartment model. The transfer rate coefficients of ¹²⁵I⁻ from seawater to the seaweeds were generally larger than those of ¹²⁵IO₃⁻, while those of both ¹²⁵I⁻ and ¹²⁵IO₃⁻ for the brawn alga were greater than corresponding values for the green alga.

This study was performed under a contract with the government of Aomori Prefecture, Japan.