Nitrogen deposition and transformation along the canopy–soil continuum of a suburban forest in Japan

J. SHI¹, N. OHTE^{2*}, N. TOKUCHI³, N. IMAMURA¹, M. NAGAYAMA¹, T. ODA¹ AND M. SUZUKI¹

¹Departmernt of Forest Science, University of Tokyo, 113-8657, Tokyo, Japan

²Department of Social Informatics, Kyoto University, 606-8501, Kyoto, Japan (*correspondebce:

nobu@bre.soc.i.kyoto-u.ac.jp)

³Field Science Education and Research Center, Kyoto University, 606-8502, Kyoto, Japan

Purpose and Approach

Heavy nitrogen (N) deposition often generates high nitrate (NO₃⁻) storages in soils in forested ecosystems. In order to clarify the sources and transformation pathways of this NO₃⁻, we monitored NO₃⁻ isotope values in deposition processes along the canopy–soil continuum of a suburban forest of Tokyo, Japan. We used stable isotopes of N and oxygen (O) to trace the source and transformation dynamics of NO₃⁻ in two types of forest stands: a plantation of *Cryptomeria japonica* (conifer; CJ) and a natural secondary forest of *Quercus acutissima* (broadleaf, deciduous tree; QA). We measured NO₃⁻ and ammonium (NH₄⁺) concentrations, as well as δ^{15} N and δ^{18} O values of NO₃⁻ in rainfall, throughfall, stem flow, litter layer water, and soil waters. Gross mineralization and nitrification rates were also measured by the pool dilution method using ¹⁵N tracers.

Results and Discussion

Seasonal variations were found in the $\delta^{15}N$ values of throughfall and stem flow NO3⁻ at both CJ and QA sites, and in the δ^{18} O values of throughfall and stem flow NO₃⁻ at the QA site. The range in the δ^{18} O values of rain and throughfall NO₃⁻ was large (65-70%) but decreased rapidly to 2-5% in soil waters. At the QA site, δ^{18} O values of stem flow NO₃ decreased to 40% during several rain events, especially in the growing season. Atmospheric NO3⁻ deposition was effectively replaced by microbially produced NO3-mainly in the organic (litter) horizon and surface part of the mineral soils under excess N deposition in this suburban forest. Gross rate observation showed that microbial activity, including both immobilization and nitrification in organic-rich horizons near the surface, contributed to incorporating atmospheric NO₃⁻ quickly into the internal microbial N cycle. Additionally, we found evidence of microbial nitrification in the canopy (tree surface) of the QA stand in summer.