Geochemical modelling of triple oxygen isotope composition of seawater using high precision $\Delta^{17}O$ analyses of oceanic crust

SUKANYA SENGUPTA¹, ANDREAS PACK¹, ZACHARY SHARP² AND WOLFGANG BACH³

¹Universität Göttingen, Geowissenschaftliches Zentrum, Abteilung Isotopengeologie, Goldschmidtstraße 1, 37073 Göttingen, Germany (*ssengup@gwdg.de)

²University of New Mexico, Albuquerque, NM, United States ³Fachbereich Geowissenschaften der Universität Bremen,

Bremen, Germany

The evolution of $\delta^{18}O$ of seawater over geologic time has been repeatedly assessed by studying the ancient rock record. Dispute remains over whether ocean $\delta^{18}O$ is buffered at $0 \pm 2\%$, and is practically invariable [1], or evolved from very low values like -13‰ to the present value over geologic time [2]. Here we present the first geochemical mass balance model for evolution of both $\delta^{18}O$ and $\delta^{17}O$ of seawater over time.

Modern seawater has δ^{18} O of 0% and Δ^{17} O of -5ppm [3] (Δ^{17} O is defined relative to a line with slope 0.5305 and zero intercept [4]), whereas the Earth mantle has δ^{18} O = 5.6% and Δ^{17} O = -101 ± 2 ppm [4]. The oxygen isotope composition of seawater is controlled by high- and low-temperature interactions with oceanic and continental crust. We have analyzed high- and low-T altered oceanic crust samples from the DSDP/ODP Hole 504B and IODP Hole U1383C. Hydrothermally altered dolerites from the sheeted dike complex have δ^{18} O = 4.6 ± 0.1% and Δ^{17} O = -49 ± 7 ppm, whereas low-T altered basalts from the uppermost crust have δ^{18} O = 10.7 ± 0.4% and Δ^{17} O = -130 ± 6ppm.

We use these data for box modeling of present and past oxygen fluxes between the different reservoirs. Using modern flux values from [1] and [2] we obtain, within uncertainty, the present-day seawater values for ice-free world: $\delta^{18}O = -1.5\%$ and $\Delta^{17}O = -5$ ppm. The model yields $\delta^{18}O = -11\%$ and an increased $\Delta^{17}O = 62$ ppm if the high-T alteration is switched off (i.e., much lower high-T to low-T alteration ratio than today; cf. [2]). We will discuss the results with respect to changing $\delta^{18}O$ of ancient chemical sediments [5] and suggest possible reasons for these changes.

[1] Muehlenbachs (1998) Chem. Geol. **145**, 263-273. [2] Jaffres et al. (2007) Earth-Science Rev. **83**, 83-122. [3] Luz & Barkan (2010) GCA **74**, 6276-6286 [4] Pack & Herwartz (2014) EPSL **390**, 138-145. [5] Sengupta et al. (2014) Goldschmidt Conference, abstract 2248.