Evidence for coupling of climate and CO\textsubscript{2} during the late Neogene cooling

OSAMU SEKI1*, DANIELA N. SCHMIDT2, ANDREAS MACKENSEN3, KIMITAKA KAWAMURA1 and RICHARD D. PANCOST4

1Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan (*correspondence: seki@pop.lowtem.hokudai.ac.jp, kawamura@lowtem.hokudai.ac.jp)
2School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK (D.Schmidt@bristol.ac.uk)
3Alfred Wegener Institute for Polar and Marine Research, 27568 Bremerhaven, Germany (Andreas.Mackensen@awi.de)
4Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK (R.D.Pancost@bristol.ac.uk)

The Cenozoic is characterized by a long-term cooling and expansion of continental ice sheets over the past 50 Myrs [1]. The Late Miocene cooling (~7 Ma) and subsequent major Northern Hemisphere Glaciation (NHG) (~3 Ma) during the Pliocene were major transitions in climatic evolution of the late Cenozoic. Recent reconstructions indicate that a long-term decline in pCO\textsubscript{2} was a key driver of global cooling and major glaciations in the Cenozoic [2-4]. However, the exact role of CO\textsubscript{2} in driving the final Cenozoic glaciations remains unclear as proxy records suggested that temperature and pCO\textsubscript{2} may be decoupled during part of the last 12 Myr [5]. In this study, we refine the alkenone paleo-pCO\textsubscript{2} barometer, revise previously published Miocene to present pCO\textsubscript{2} datasets [4] [6] [7], and provide additional records that are continuous at a given site in late Miocene. Our refined CO\textsubscript{2} record reveals that, although the change was subtle, strong coupling of pCO\textsubscript{2} and climate has persisted over the last 10 Myr. Causes of the long-term drawdown of pCO\textsubscript{2} remain unknown but it could have been related to intensification of mountain erosion [8] and/or the ocean cooling [9].