Boron isotope fractionation during transportation of sea-salt particle

KOHEI SAKATA¹, AYA SAKAGUCHI², YOSHIO TAKAHASHI³, KAZUYA NAGAISHI⁴ AND MASAHARU TANIMIZU⁵

¹Hiroshima Univ., Higashi-Hiroshima, 739-8526, Japan. kou-sakata@hiroshima-u.ac.jp;
²Univ. of Tsukuba, Ibaraki 305-8577, Japan;

⁴Marine Works Japan, Kochi 783-8502, Japan;

⁵JAMSTEC, Kochi 783-8502, Japan

Boron isotope ratio (δ^{11} B: [(¹¹B/¹⁰B)_{sample} /(¹¹B/¹⁰B)_{NIST951}-1]×1000) has been expected to be an atmospheric circulation tracer (e.g. Sakata et al., 2013). In previous studies, B isotope fractionation during transportation has not been considered, but the fractionation may occur in atmosphere due to the presence of gaseous and particulate B (Fogg and Duce, 1985). Therefore, clarification of the B isotope fractionation mechanism is essential to use δ^{11} B as the tracer. Firstly, B isotope fractionation mechanism in sea-salt is discussed here, because seawater (δ^{11} B: +39.5‰) is the largest soruce of atmospheric B.

Size-fractionated aerosols were collected at Hiroshima, Japan. Marine total suspended particulate (TSP) and size-fractionated aerosols were collected on the R/V Hakuho-Maru cruises of KH-12-4 (the North Pacific Ocean) and KH-13-4 leg. 4 (the Bay of Bengal), respectively. Boron isotope ratio was measured by MC-ICP-MS after chemical separation.

Enrichment factor (EF), which is normalized by B/Na ratio in seawater, suggests that B in marine and continental coase aerosols were derived from seawater rather than crustal and antropogenic materials. The δ^{11} B values in marine aerosols (+37‰-+44‰) increased in the order of < coarse aerosols < seawater < TSP < fine aerosols. In Hiroshima, δ^{11} B values in coarse aerosols were from +15 to +20‰, which was different from that of seawater. It is considered that differences of $\delta^{11}B$ were caused by B isotope fractionation because source of B in these aerosols is seawater. In seawater, there are two B species, $B(OH)_3$ and $B(OH)_4^-$, $B(OH)_3,$ which has high $\delta^{11}B$ (+40%), and prefenentially vaporizes compared to $B(OH)_4^-$ (+20%). This idea is reasonable to explain high $\delta^{11}B$ in finer aerosols, which is formed by gas condensation. Isotope fractionation is also caused by coprecipitation of B(OH)₄ in sea-salt. It is known that B(OH)₄ prefenetially coprecipitates in evaporite, which typically has $\delta^{11}B$ values around +20‰, comparable to $\delta^{11}B$ in the coarse aerosols at Hiroshima. Thus, B isotope fractionations are caused by vaporization of B(OH)3 and coprecipitation of $B(OH)_4^-$ during atmospheric transportation.

³The Univ. of Tokyo, Japan;