Experimental diagenesis: Exploring the impact of differential fluid temperature and chemistry on biogenic aragonite

ANN-CHRISTINE RITTER¹*, VASILEIOS MAVROMATIS², MARTIN DIETZEL², WOLFGANG SCHMAHL³, ERIKA GRIESSHABER³, LAURA CASELLA³, JENNIFER KOELEN¹, ROLF NEUSER¹, ANDREA NIEDERMAYR¹, DIETER BUHL¹ AND ADRIAN IMMENHAUSER¹

¹Ruhr-University, Bochum, Universitätsstraße 150, 44801 Bochum, Germany,

(*correspondence: ann-christine.ritter@rub.de)

²Technical University Graz, Rechbauerstraße 12, 8010 Graz, Austria

³Ludwig-Maximilians-University, Munich, Theresienstrasse 41, 80333 München, Germany

Aragonitic shells of the molluscan bivalve Arctica islandica are widely used as climate archives. The shell of A. islandica yields information on environmental change and climate dynamics with life spans of individual specimen reaching up to three centuries (Schöne et al 2005[1]). Nevertheless, the assessment of fossil shells of Arctica islandica – and generally of any aragonitic endo- or exoskeleton – is limited due to post-depositional/post-mortem diagenetic overprint. The present study aims at a better understanding and quantification of diagenetic overprint of fossil shell material using A. islandica as a test organism.

The approach followed here was to expose pristine shell material to fluids representing meteoric, marine and burial aquatic environments under different experimental temperatures and durations. Before and after artificial alteration, shell material is characterized using different optical (thin section and cathodoluminescence microscopy, SEM) and geochemical (δ^{13} C, δ^{18} O, main and trace elements) techniques. Comparison of data obtained from recent unaltered and artifically altered as well as the direct comparison with naturally altered, fossil shell material sheds light on patterns, processes and threshold limits.

[1] Schöne, Bernd R. *et al*, *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology* 228.1 (2005): 130-148."Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland)."