Liquid immiscibility in the system NaF-H₂O at 1073 K and 170–230 MPa and its effect on the microlite solubility

ALEXANDER F. REDKIN, NATALIYA P. KOTOVA AND YURY B. SHAPOVALOV

Institute of Experimental Mineralogy Russian Academy of Sciences, Chernogolovka, Moscow Oblast, Russia, redkin@iem.ac.ru, kotova@iem.ac.ru, shap@iem.ac.ru

Solutions of P-Q type in the field of fluid immiscibility at high T-P parameters are of interest as solvents of ore components because they form a couple of phases $L_1 \ \text{M} \ L_2$, which essentially differ in salt content and the dissolving ability in respect of ore components. This phenomenon can play an important role in the mobilization processes of poorly soluble ore components from magmatic melts. Of particular interest is aqueous solution of sodium fluoride of P-Q type which has the critical point at T>973 K and $P \approx 200$ MPa. Experimental studies of microlite (CaNa)Ta2O6F solubility were carried out in the system NaF-H₂O of P-Q type in a wide range of sodium fluoride concentrations (from 0 to 40 wt.% NaF). Tantalum concentration in equilibrium with microlite and fluorite in the concentrations range of NaF from 0 to 8 mol·kg⁻¹ H₂O (25 wt. % NaF) does not exceed 3×10⁻⁵ mol·kg⁻¹ ¹. Sodium fluoride concentrations have been estimated in immiscible fluids L1 (fluid of moderate density) and L2 (dense fluid) in the system NaF-H₂O at 1073 K and 200-230 MPa. The L₁ and L₂ fluids contain 2 ± 1 and 11 ± 2 wt.% NaF at p =The L₁ and L₂ funds contain 2 ± 1 and 11 ± 2 wt.% For at p = 170 MPa, 5 ± 1 and 26 ± 1 wt.% NaF at p = 200 MPa, and 12 ± 1 and 25 ± 1 wt.% NaF at p = 230 MPa. The thermodynamic calculations indicate that predominant Ta species in the homogenous field of NaF-H₂O solutions in equilibrium with microlite and fluorite are HTaO₃°, TaO₂F°, and Na₆H₂Ta₆O₁₉°.

The work is supported by Russian Foundation for Basic Research Grants 14-05-00145-a, 15-05-03393-a, and the program DES RAS N 2.