Sulfur radical species form gold deposits on Earth G. S. Pokrovski^{1*}, M. A. Kokh¹, D. Guillaume¹, A. Y. Borisova¹, P. Gisquet¹, J.-L. Hazemann², E. Lahera³, W. Del Net³, O. Proux³, D. Testemale², V. Haigis⁴⁵, R. Jonchière⁴⁵, A. P. Seitsonen⁴, G. Ferlat⁵, R. Vuilleumier⁴, A. M. Saitta⁵, M.-C. Boiron⁶ and J. Dubessy⁶ ¹Géosciences Environnement Toulouse, France (*correspondence: gleb.pokrovski@get.obs-mip.fr ²Institut Néel, Grenoble, France ³Observatoire des Sciences de l'Univers de Grenoble, France ⁴Ecole Normale Supérieure, Paris, France ⁵Sorbonne Universités – UPMC, IMPMC, Paris, France ⁶GéoRessources, Vandoeuvre-lès-Nancy, France Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide (H₂S) controls gold mobilization and precipitation by fluids across the lithosphere [1] [2]. However, this paradigm may be challenged by recent findings of sulfur radical forms such as the trisulfur (S_3^-) and disulfur (S_2^-) ions, which are stable in aqueous solution at elevated temperatures and pressures [3] [4]. To provide a quantitative understanding of the role of these S forms on gold behavior, we combined in X-ray absorption spectroscopy and ab-initio molecular dynamics and measurements with thermodynamic simulations on aqueous Au-S-bearing solutions representative of ore-forming hydrothermal fluids. The results demonstrate the formation of soluble complexes between S₃ and Au⁺ and allow their stability across a wide temperature-pressure range of crustal fluids to be quantified. These species enable extraction, transport, and focused precipitation of gold by S-rich fluids 10-100 times more efficiently than hydrogen sulfide only. As a result, S₃ provides a major control on the source, concentration and distribution of gold and associated metals in economic deposits, such as magmatic-related porphyry-epithermal Cu-Au(-Mo), sedimentary rock-hosted Carlin, and metamorphic orogenic Au deposits. The growth and decay of S₃ (and potentially S₂) during the hydrothermal fluid generation and evolution may thus be a key factor that determines the fate of gold in the lithosphere. [1] Seward (1973), GCA **37**, 379-399. [2] Pokrovski et al. (2014), Geol. Soc. London Spec. Publ. **402**, 9-70. [3] Pokrovski & Dubrovinsky (2011), Science **331**, 1052-1054. [4] Pokrovski & Dubessy (2015), EPSL **411**, 298-309.