Fumarolic and diffuse soil CO₂ output from Furnas Volcano (Azores)

M. PEDONE^{12*}, F. VIVEIROS³, A. AIUPPA¹², G. GIUDICE², F. GRASSA², V. FRANCOFONTE² AND T. FERREIRA³

¹DiSTeM, Università di Palermo, via Archirafi, 36, Palermo 90123, Italy (*correspondence: pedone_maria@libero.it) ²Istituto Nazionale di Geofisica e Vulcanologia, Sezione di

Palermo, via Ugo La Malfa, 153, Palermo 90146, Italy ³Centro de Vulcanologia e Avaliação de Riscos Geológicos, University of the Azores, Rua Mãe de Deus, Ponta Delgada 9501-801, Portugal

Introduction

Carbon dioxide diffuse degassing structures and fumarolic fields at Furnas volcano (São Miguel Island, Azores) are the surface expression of rising hydrothermal steam. Soil CO₂ surveys, started in the early nineties, initially demonstrated the existence of a significant CO₂ degassing area in Furnas caldera. Here, we report the results of a study (performed in August 2014) in which soil CO₂ degassing surveys (via accumulation chamber) were combined, for the first time, with measurement of the fumarolic CO₂ flux, using a GasFinder 2.0 tunable diode laser.

Results and Discussion

At each site, we used an ad-hoc designed measurement geometry, using a TDL (a GasFinder unit) and several differently positioned retroreflectors (mirrors), to scan the fumaroles' plume from different angles and distances. From post-processing of the data, we derived contour maps of CO₂ mixing ratios in the plume and, by integration and combination with plume transport speed, we inferred the CO₂ flux directly. Simultaneously, the accumulation chamber equipped with a LICOR LI-800 infrared CO_2 detector that measures CO_2 concentrations in the range 0 - 2 vol.% was used. The soil CO_2 flux contribution from both fields (9.2 t/d) represented a minor (10-15%) contribution to the total CO_2 output (60.5 t/d), which was therefore dominated by fumaroles. The CO₂ emitted by the fumaroles is far lower than the total hydrothermal diffuse degassing flux of ~ 968 t/d. This observation supports the conclusions that, although fumaroles are the most visible surface manifestations of thermalism, they may contribute relatively little to the total CO₂ output from a quiescent, hydrothermal volcano, although exceptions may do exist.