Origin and implications of Archean sulfur mass-independent fractionation

SHUHEI ONO AND ANDREW R. WHITEHILL

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge MA 02139, USA

Signatures of sulfur isotope mass-independent fractionations (S-MIF) in Archean sulfate and sulfide minerals have been considered as the most convincing evidence for early anoxic atmosphere, and constrain the atmospheric oxygen level to less than a few ppm until before 2.3 Ga [1] [2]. Despite the critical importance in understanding early evolutionary history of atmospheric oxygen and biosphere, the source reaction(s) and physical mechanism of S-MIF are poorly constrained. We will review the research on the origin of S-MIF for 15 years since its discovery, and discuss future directions and promises in our understanding in the chemistry of an early atmosphere.

Since the pioneering study by Farquhar et al., [3] SO$_2$ photolysis with <220 nm UV radiation has been the main candidate for the source of S-MIF. Later laboratory photochemistry experiments, however, yield much smaller magnitude S-MIF [4] [5]. Theoretical ab initio calculations suggest only weak perturbations in the C state SO$_2$ [6]. Furthermore, the latest spectroscopy measurements showed small isotopologue dependent cross section amplitude difference [7]. What is the S-MIF source reaction if it is not SO$_2$ photolysis? SO$_2$ photoexcitation at 240 to 340 nm produces large MIF [8]. The long life time of the low lying 'B excited state allows expression of isotopologue specific perturbation in the photochemical products (organic-S or sulfate). In addition, we are investigating the photochemistry of SO and S$_2$ as the source of S-MIF. Photochemical model sugests the preservation of S-MIF signal from SO (and S$_2$) would be more favored than that from SO$_2$ photolysis [9]. We will discuss implications for Archean sulfur cycle and pO$_2$ constraints if SO$_2$ photolysis is not the S-MIF source reaction.