Formation of deuterated "chiral" glycine by low-temperature surface reactions via quantum tunneling

YASUHIRO OBA¹, NAOKI WATANABE AND Akira Kouchi

Institute of Low Temperature Science, Hokkaido University, E-mail: oba@lowtem.hokudai.ac.jp

Glycine is not positively identified in interstallr molecular clouds [1], although laboratory experiments predict that it can be formed on interstellar grains [2]. If this is the case, the formed glycine could become enriched in deuterium (D) by surface reactions on grains, as is the case for well-known Denriched interstellar molecules such as methanol and formadehyde [3]. In the present study, we experimentally investigated hydrogen (H)-D substitution of solid glycine through the reaction with D atoms at low temperatures.

Solid glycine (NH₂CH₂COOH, d_0 -Gly) was codeposited with D atoms, which were produced in a microwave-induced D₂ plasma, onto a cold substrate at 12 K in a vacuum chamber. After the codeposition, the sample was warmed to room temperature and dissolved in distilled and deionized H₂O, and the extracted aqueous sample was analyzed by high-resolution mass spectromtry with mass resolution 70,000 at m/z = 200.

The formation of mono- $(d_1$ -Gly) and di-deuterated glycines $(d_2$ -Gly) were confirmed in the mass spectra of the codeposition sample. The abundance of d_1 - and d_2 -Gly relative to d_0 -Gly reached to 2.4×10^{-1} and 6.3×10^{-2} , respectively, in the present study. Since glycine should exchange its labile hydrogens (carboxyl and amino groups) with H₂O when extracted from the reaction substrate, their D/H ratio should be terrestrial value, ~10⁻⁴. We therefore conclude that one- or two carbon-bound hydrogen in glycine was replaced with D after codeposition with D atoms at 12 K and the reaction proceeds through quantum-tunneling.

It should be noted that the formed d_1 -Gly, NH₂CHDCOOH, is a chiral molecule. Since any chiral molecules have never been observed in molecular clouds, d_1 -Gly could be a possible candidate for the origin of whole chiral molecules during the evolution from molecular clouds to planetary systems.

[1] Snyder et al. (2005) Astrophys. J., **619**, 914–930. [2] Bernstein et al. (2002) Nature, **416**, 401–403. [3] Watanabe and Kouchi (2008) Prog. Surf. Sci., **83**, 439–489.