Pillow basalts from the Mount Ada basalt, Warrawoona group, Pilbara Craton: Implications for the initiation of granite-greenstone terrains

D. T. Murphy1*, J. Trofimovs1, R. A. Hepple1, D. Wiemer1, A. I. S. Kemp2 and A. H. Hickman3

1Earth, Environmental and Biological Sciences, Queensland University of Technology, 4001, Australia (correspondence: david.murphy@qut.edu.au)
2School of Earth and Environment, The University of Western Australia, 6009, Australia
3Department of Mines and Petroleum, Western Australia

The Pilbara Craton represents the archetypal Archean granite-greenstone terrain in which mafic volcanic dominated supercrustals are intruded by granitic domes. This crustal morphology reflects distinct tectonic settings that formed in a hotter early Earth.

The ambient temperature in the Paleoarchean mantle is estimated to be 1600°C [1] and corresponds with the liquidus temperature of Barberton komatiites [2]. In the Paleoarchean mantle a pyrolite composition at depths of less than 100 km is expected to melt and generate ultramafic magmas.

Here we present volcanology, petrology and geochemistry data of well-preserved basaltic lavas ascribed to the Mount Ada Basalt, Warrawoona Group from the Doolena Gap Greenstone Belt. The Mount Ada Basalt was coeval with the Callina plutonic event that marks the initiation of dome formation in the Pilbara Craton [3]. The Doolena Gap sequence is exclusively pillow basalts with MgO < 10%. Isotopically the basalts are indistinguishable from contemporary non-chondritic Bulk Earth (εNd, 1.0 ± 0.2 and εHf, 2.3 ± 0.2).

Here we address the implications of Paleoarchean basalts with MgO% < 10 derived from melting of a source indistinguishable from non-chondritic Bulk Silicate Earth to the initiation and subsequent evolution of the Pilbara Craton.