The clumped isotope fractionation for carbonates reacted with phosphoric acid at 70 °C in a KIEL IV – MAT 253 system

I. A. MÜLLER^{1*}, M. E. S. VIOLAY¹, M. BONIFACIE², A. KATZ², A. FERNANDEZ¹, J.VAN DIJK¹, C. MADONNA¹ AND S. M. BERNASCONI¹

¹ETH, Geological Institute, 8092 Zürich ²IPGP, Sorbonne Paris Cité, 75005 Paris, France (*inigo.mueller@erdw.ethz.ch)

The application of the clumped isotope signature (Δ_{47}) of carbonate minerals as proxy for temperature is increasingly used in studies ranging from paleoclimatology to low temperature diagenetic processes. Yet inter-laboratory comparison of Δ_{47} analyses suffers from small uncertainties, such as the isotopic fractionation during phosphoric acid digestion of the carbonate mineral ($^{13}C^{18}O^{16}O_2$) to gaseous CO₂ ($^{13}C^{18}O^{16}O$). Pioneer studies [1] [2] observed a positive isotope fractionation in Δ_{47} and determined its dependence on the acid digestion temperature.

We drove various carbonate minerals to a stochastic isotope distribution by heating them to 1000°C in a "Paterson apparatus" at ETH and a piston cylinder at IPGP. Samples were digested in phosphoric acid at 70°C in a Kiel IV carbonate device and the Δ_{47} analyzed with a MAT 253 isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany). The Δ_{47} values were pressure baseline corrected, transferred to the absolute reference frame and projected to an acid digestion temperature of 25°C [3].

Preliminary results for the acid digestion fractionation of calcite at 70°C in a Kiel IV system are consistent with the temperature dependent acid fractionation factor derived from interpolating data of [4] [5] and confirm the acid fractionation at 25°C determined by [2] [4].

Ghosh et al. (2006), GCA 70, 1439-1456. [2] Guo et al. (2009), GCA 73, 7203-7225. [3] Meckler et al. (2014), RCMS 28, 1705-1715. [4] Henkes et al. (2013), GCA 106, 307-325.
Defliese et al. (2015) Chemical Geology 396, 51-60.