Experimental study of CO₂ sequestration via goethite carbonation

TERESITA MORAILA-MARTÍNEZ¹, CHRISTINE V. PUTNIS¹² AND ANDREW PUTNIS¹³

¹Institut für Mineralogie, Univ. of Münster, Corrensstraße 24, 48149 Münster, Germany (t.moraila@uni-muenster.de)

²Department of Chemistry, Curtin University, Perth 6102,

Australia (putnisc@uni-muenster.de)

³The Institute for Geoscience Research (TIGeR), Curtin University, Perth 6102, Australia (andrew.putnis@curtin.edu.au)

Mineral carbonation in geological formations is the fixation of CO_2 as stable carbonate minerals, such as calcite (CaCO₃), dolomite (CaMg(CO₃)₂), magnesite (MgCO₃), siderite (FeCO₃) and Mg-Fe carbonate solid solutions [1]. This is one of the promising methods proposed to mitigate increasing atmospheric CO_2 .

The objective of this research is to study if goethite (FeO(OH)), a common mineral in soils, could be replaced by siderite or other iron carbonates in the presence of carbonate solutions. To test this hypothesis we have performed a series of experiments with goethite as the starting mineral using *in situ* Atomic Force Microscopy (AFM) experiments at room temperature, CO₂-water solution at pH 3.5, NaHCO₃ aqueous solutions at different concentrations and pH (3.5-8). As well, we have performed similar ex-situ hydrothermal experiments, under a range of temperatures (50-150 °C) for 7 days. After reaction, product phases were characterized using Raman spectroscopy and Scanning Electron Microscopy (SEM).

Acknowledgement: This work is funded within a Marie Curie EU initial training network – CO2 React.

[1] Gislason S.R. et al. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the Carb-Fix project. *International Journal of Greenhouse Gas Control.* **4**, 537-545 (2010).