Local structure of Al and Cd in Al-Cd hydroxide coprecipitates

AKANE MIYAZAKI^{1*}, YUI YAMANISHI², HIRONORI OHASHI³ AND TAKUSHI YOKOYAMA²

¹Faculty of Science, Japan Women's University, 112-8681 Tokyo, Japan, (*correspondence: miyazakia@fc.jwu.ac.jp)

²Faculty of Science, Kyusyu Univerity, 812-8581 Fukuoka, Japan (yokoyamatakushi@chem.kyushu-univ.jp) ³Faculty of Symbiotic Systems Science, Fukushima University, 960-1296 Fukushima, Japan

Structural transformation from AlO₆ to AlO₄ in Al(OH)₃ was found to be induced by Zn²⁺ adsorption onto Al(OH)₃ [1]. The mechanism was explained by inner-sphere complexation followed by dissolution of Al(OH)₃ and coprecipitation of Zn²⁺ and Al³⁺[2]. In this study, local structure of Cd in Al-Cd hydroxide coprecipitates was studied as a model substance of Cd²⁺ adsorbed onto Al(OH)₃. Chemical structures of Al-Cd and Al-Zn hydroxide precipitates were compared.

Chemical State of Al

Al-Cd hydroxide coprecipitates having Cd/Al ratios of 100, 10, 3, and 1 were prepared. ^{27}Al MAS NMR spectra showed the existance of AlO₄ structure in coprecipitates with low Cd/Al ratio, Cd/Al = 1. This was the same tendency to Al-Zn hydroxide coprecipitates and seemed to suggest the formation of CdAl₂O₄-like structure by Cd²⁺ adsorption onto Al(OH)₃.

Chemical State of Cd

In order to see the chemical states of Cd in Al-Cd hydroxide coprecipitates, ¹¹³Cd MAS NMR, XRD, and EXAFS were applied. EXAFS result suggested that Cd is 6 coordinated in all the coprecipitates. However, XRD pattern of the coprecipitates did not agreed with CdAl₂O₄ or Cd(OH)₂ but Cd(OH)NO₃·H₂O. Moreover, ¹¹³Cd MAS NMR peaks of these samples had different values of chemical shift from each other and also from Cd(OH)₂.

The above results suggested that adsorption product of Cd^{2+} on the surface of $Al(OH)_3$ was not $CdAl_2O_4$, which was expected by analogy to Zn^{2+} . On the other hand, they showed that $Cd(OH)NO_3 \cdot H_2O$ and $Cd_5(OH)_8(NO_3)_2 \cdot 2H_2O$ are the possible hydrolysis products of Cd^{2+} in natural water systems.

- [1] Miyazaki et al. (2013) Colloid and Surface A 420, 115-121.
 [2] Miyazaki et al. (2003) Geochem. Cosmochim. Acta 67,
- [2] Miyazaki *et al.*, (2003) Geochem. Cosmochim. Acta **6**1, 3833-3844.