Glass stability of natural silicate compounds from igneous rocks

V. MISITI¹, A. L. ELBRECHT², M. DAVIS², G. IEZZI^{31*}, F. VETERE⁴, A. CAVALLO¹ AND S. MOLLO¹

¹Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy ²SCHOTT North America, New York, USA, ³Dip. INGEO, Univ. G. d'Annunzio, Chieti, Italy (g.iezzi@unich.it) ⁴Di Einie & Chieti, Unie Denie Kul

⁴Dip. Fisica & Geologia, Univ. Perugia, Italy

The glass stability (GS) of natural silicate glasses, i.e. noncrystalline solids with compositions of igneous rocks, is poorly constrained. GS measures the resistance of a glass to crystallize when heated above its glass transition region. Using a differential scanning calorimeter (DSC), we have investigated six glassy starting materials with compositions variable from basalt (B₁₀₀) to rhyolite (R₁₀₀). In this range of compositions the DSC peaks related to Tg (glass transition), Tx (crystallization) and Tm (melting) temperatures become progressively less resolvable or even unidentifiable for the case of $B_{20}R_{80}$ and R_{100} . Tx markedly increases, whereas Tm decreases from B_{100} to $B_{40}R_{60}$ accounting for the crystallization of pyroxene, plagioclase and spinel. In contrast, B₂₀R₈₀ and R₁₀₀ did not form any crystalline phase. The glass stability resulting from Tg, Tx and Tm linearly increases from B₁₀₀ to B40R60. These parameters linearly scale with the glass-forming ability (GFA) of the compounds measured as the Rc (critical cooling rate) parameter.