Oxygen and nitrogen isotope systematics during soil nitrification

GREG MICHALSKI¹ AND ESTHER YOUN¹

¹Purdue University, 550 Stadium Mall, West Lafayette, IN. 47907. gmichals@purdue.edu

Nitrification is the main natural way of producing nitrate, a key nutrient in biogeochemistry. In a world where the N cycle has be perturbed by human activity through the addition of N from fertilizers and atmospheric deposition, it is important to be able to distinguish between natural and anthroprogenic N in a system. Stable isotopes offer the opportunity to delineate between natural and anthroprogenic sources of nitrate. One limitation is the uncertainty in the $\delta^{18}O$ and $\delta^{15}N~$ of nitrate produced by nitrification. To reduce this uncertainty we have conducted a series of soil incubation experiments to assess the $\delta^{15}N$ and $\delta^{18}O$ values that arise during the nitrification process. Nitrification incubations using waters with unique δ^{18} O values were carried out. Also, nitrification potentials were carried out using sealed incubation chambers that had O_2 with uniue $\delta^{18}O$ values. The shift in $\delta^{15}N$ fom the starting NH_4^+ reagent was also measured. The results help constrain the $\delta^{15}N~$ and $\delta^{18}O$ values that should arise during soil nitrification.