Chlorine depletion in the lunar mantle is problematic for a "wet" Moon

FRANCIS M. MCCUBBIN¹²

¹Institute of Meteoritics, University of New Mexico, Albuquerque, NM, 87131

²NASA Johnson Space Center, Houston, TX, 77058

Analyses of ultramafic volcanic glasses, olivine-hosted melt inclusions within volcanic glasses, and apatites within mare basalts all indicate that the mare source region is highly depleted in Cl compared to F and H₂O [1-3]. In contrast, apatites from crustal rocks are enriched in Cl relative to F or H₂O [3]. Furthermore, estimates of the volatile content of urKREEP (i.e., the last 1-2% of the global lunar magma ocean (LMO)) indicate that the abundance of Cl > F and Cl > H₂O [4].

Given the incompatible nature of F, Cl, and H_2O in nominally anhydrous silicates, the above observations imply that the volatile content of the mare source region is not representative of trapped interstitial residual liquid from the LMO because such a process would not efficiently fractionate F and H_2O from Cl. However, if the volatile content of the mare source region is controlled by the F, Cl, and H_2O partitioning relationships between nominally anhydrous minerals (NAM) and melt, the mare source would be enriched in F and H_2O relative to Cl because Cl is much more incompatible in NAM's than F and H_2O [5-8].

A mare source region controlled by NAMs poses a problem for estimates of a wet lunar mantle (>10 ppm H_2O) because it requires superchondritic abundances of F and Cl in the LMO liquid, which is inconsistent with overwhelming geochemical evidence for a volatile-depleted Moon. In fact, if the mare source region is controlled by NAMs, the bulk H_2O content of the lunar mantle is likely < 1 ppm.

Alternatively, experiments on the partitioning of F, Cl, and H_2O between nominally anhydrous minerals and melt have not been conducted under lunar *P*-*T*-*X*-*f*_{O2} conditions, and if the mineral melt partition coefficients are sufficiently high, a NAM controlled volatile budget for the lunar mantle could be reconciled with some of the terrestrial-like estimates for the H_2O content of the lunar interior.

[1] Saal et al., (2008) Nature, 454, 192-195 [2] Hauri et al., (2011) Science, 333, 213-215. [3] McCubbin et al., (2011) Geochimica et Cosmochimica Acta, 75, 5073-5093 [4] McCubbin et al., (2015) American Mineralogist, 100, In Press [5] Beyer et al., (2012) Earth and Planetary Science Letters, 337, 1-9 [6] Hauri et al., (2006) Earth and Planetary Science Letters, 248, 715-734 [7] O'Leary et al., (2010) Earth and Planetary Science tal., (2009) Chemical Geology, 262, 42-56.