Influence of pH on boron and carbon isotopes in coral skeletons

P. MARTIN¹, T. T. YANG¹, J. A. STEWART², G. L. FOSTER², B.-S. WANG³, T.-Y. FAN⁴, C.-F. YOU⁵ AND N. F. GOODKIN¹

¹Earth Observatory of Singapore, Singapore (pmartin@ntu.edu.sg, teng-teng.yang@shell.com, nathalie@ntu.edu.sg)

²Ocean and Earth Science, University of Southampton, UK (joseph.stewart@noc.soton.ac.uk, gavin.foster@noc.soton.ac.uk)

³Research Centre for Environmental Changes, Academia Sinica, Taiwan (bswang@sinica.edu.tw)

⁴National Museum of Marine Biology and Aquarium, Taiwan (tyfan@nmmba.gov.tw)

⁵Dept. of Earth Sciences, National Cheng Kung University, Taiwan (cfy20@mail.ncku.edu.tw)

The boron isotopic composition of coral skeleton ($\delta^{11}B$) is common proxy for reconstructing past seawater pH. а However, because corals increase the pH of their calcifying fluid relative to seawater to aid calcification, $\delta^{11}B\text{-based}\ pH$ estimates must be corrected for this pH difference. Unfortunately, instrumental records of seawater pH to empirically calibrate the δ^{11} B proxy are currently scarce. We show that there is a relationship between the boron $(\delta^{11}B)$ and carbon ($\delta^{13}C$) isotopic composition in the skeletons of both deep-sea and tropical shallow-water corals. We further show that skeletal δ^{13} C is related to the pH difference between the calcifying fluid and seawater. This relationship can be explained by the effect that pH differences have on the rate of CO₂ diffusion from seawater to the calcifying fluid, because greater incorporation of isotopically-light carbon from CO2 into the coral skeleton reduces skeletal $\delta^{13}C$. We used a numerical model to explore how physiological manipulation of the calcifying fluid by corals (through ion pumps and exchange with seawater) can give rise to the trends we observed in $\delta^{11}B$, $\delta^{13}C$, and the pH difference between seawater and the calcifying fluid. Although $\delta^{13}C$ in coral skeletons is undoubtedly also influenced by factors besides pH, our data indicate that $\delta^{13}C$ might potentially be a useful proxy measure to correct $\delta^{11}B$ data for the pH difference between calcifying fluid and seawater.