Insights into mechanisms of nitrous oxide generation from measurement of nine N₂O isotopologues

PAUL M. MAGYAR $^{1\ast},$ Victoria J. Orphan 1 and John M. $Eiler^{1}$

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA (*correspondence: pmagyar@caltech.edu)

Nitrous oxide (N₂O), a greenhouse gas and ozonedepleting molecule, is currently accumulating in the atmosphere. This accumulation is thought to be driven by biological nitrification and denitrification, but the exact balance of biological contributions of N₂O in the environment is unclear. We are assessing whether distinct isotopic signatures are associated with different biological sources of N₂O, using new analytical methods of high resolution mass spectrometry that enable quantification of: δ^{15} N, δ^{18} O, Δ^{17} O, ¹⁵N site preference, and the clumped isotopologues ¹⁴N¹⁵N¹⁸O, ¹⁵N¹⁸O, ¹⁵N¹⁴N¹⁸O, ¹⁵N₂¹⁶O, and the sum of ¹⁴N¹⁵N¹⁷O+¹⁵N¹⁴N¹⁷O. Each of these parameters records different aspects of the substrates and bond-making and bond-breaking reactions that involve N₂O and its precursors, including both equilibrium and kinetic effects.

We have applied these techniques to measure the isotopologues of N2O associated with a number of environmentally relevant processes, including bacterial and fungal denitrification, bacterial ammonia oxidation, and abiotic nitrite reduction by ferrous iron. The bulk isotopic compostion and ${}^{\rm 15}\!N$ site preference for each sample match the expected mechanism of formation and previous pure culture measurements. No sample has position-specific and clumped isotope compositions consistant with an equilibrated final product. Most processes produce a Δ (¹⁴N¹⁵N¹⁸O+¹⁵N¹⁴N¹⁸O) value, which represents the abundance of these two isotopologues relative to a random distribution of $^{15}\mathrm{N}$ and $^{18}\mathrm{O}$ among all isotopologues, between 0 and 1‰. But for some samples that come from organisms with a copper-type nitrite reductase, including both ammonia oxidizing bacteria and denitrifiers, this parameter can be less than zero. One possibility is that these values can be inherited from from precursors to N₂O, like nitrite. Finally, the site preference for ¹⁵N in ¹⁸O-containing isotopomers proves to be useful to distinguish N₂O from fungal denitrifiers and the hydroxlamine oxidation pathway of bacterial nitrifiers, which overlap in both $\Delta(^{14}N^{15}N^{18}O+^{15}N^{14}N^{18}O)$ and conventional ¹⁵N site preference. These results suggest that all measured isotopologues are useful for distinguishing among various mechanisms of nitrous oxide production.