Extremely isotopically enriched ammonium shows high nitrogen turnover in the pile top zone of dairy manure compost

K. MAEDA^{1*}, S. TOYODA², M.YANO², S. HATTORI², M. FUKASAWA², K. NAKAJIMA¹ AND N. YOSHIDA²

¹NARO, Sapporo 062-8555, Japan, k_maeda@affrc.go.jp ²Tokyo Institute of Technology, Yokohama 226-8502, Japan

 δ^{15} N-NH₄⁺-N of dairy manure compost piles with and without bulking agent (10% w/w) were compared to understand the significant mitigation of N₂O emission by the use of bulking agent. δ^{15} N-NH₄⁺-N of each locations of the pile (top, side and core) were also compared. Piles with bulking agent showed significantly higher value 17.7±1.3‰ than that of the piles without bulking agent (11.8±0.9‰) at the end of the process, reflecting significant higher nitrogen conversion and NH₃ loss occurred in the pile with bulking agent. The pile top samples, especially in the piles with bulking agent, showed very high NH₄⁺-N concentrations with significantly enriched δ^{15} N values (12.7-29.8‰) indicate extremely high nitrogen conversion, nitrification-denitrification activity of the microbes and NH₃ volatilization occurred in this zone.